import json
from pathlib import Path
import numpy as np
from scipy.ndimage import percentile_filter
from scipy.stats import norm
def _normalize_iscell(iscell):
"""Ensure iscell is 1D boolean array."""
if iscell.ndim == 2:
iscell = iscell[:, 0]
return iscell.astype(bool)
def filter_by_diameter(iscell, stat, ops, min_mult=0.3, max_mult=3.0):
"""
Set iscell=False for ROIs whose radius is out of range relative to ops['diameter'].
"""
iscell = _normalize_iscell(iscell)
if "radius" not in stat[0]:
from suite2p.detection.stats import roi_stats
stat = roi_stats(
stat,
ops["Ly"],
ops["Lx"],
aspect=ops.get("aspect", None),
diameter=ops.get("diameter", None),
max_overlap=ops.get("max_overlap", None),
do_crop=ops.get("soma_crop", 1),
)
radii = np.array([s["radius"] for s in stat])
median_diam = ops.get("diameter", np.median(radii))
lower, upper = min_mult * median_diam, max_mult * median_diam
iscell &= (radii >= lower) & (radii <= upper)
return iscell
def filter_by_area(iscell, stat, min_mult=0.25, max_mult=4.0):
"""
Filter cells by total area (in pixels).
Cells with area outside [min_mult*median_area, max_mult*median_area] are rejected.
"""
iscell = _normalize_iscell(iscell)
areas = np.array([len(s["xpix"]) for s in stat])
median_area = np.median(areas)
lower, upper = min_mult * median_area, max_mult * median_area
iscell &= (areas >= lower) & (areas <= upper)
return iscell
def filter_by_eccentricity(iscell, stat, max_ratio=5.0):
"""
Set iscell=False for ROIs that are extremely elongated (bounding box disproportion).
"""
iscell = _normalize_iscell(iscell)
ecc = []
for s in stat:
h = s["ypix"].max() - s["ypix"].min() + 1
w = s["xpix"].max() - s["xpix"].min() + 1
ratio = max(h, w) / max(1, min(h, w))
ecc.append(ratio <= max_ratio)
iscell &= np.array(ecc, dtype=bool)
return iscell
def mode_robust(x):
"""Half-sample mode robust estimator."""
x = np.sort(x)
n = len(x)
if n == 1:
return x[0]
if n == 2:
return np.mean(x)
if n == 3:
d1, d2 = x[1]-x[0], x[2]-x[1]
if d1 < d2:
return np.mean(x[:2])
elif d2 < d1:
return np.mean(x[1:])
else:
return x[1]
# recursive half-sample mode
N = n//2 + n%2 - 1
wmin = np.inf
j = 0
for i in range(N):
w = x[i+N-1] - x[i]
if w < wmin:
wmin = w
j = i
return mode_robust(x[j:j+N+1])
def compute_event_exceptionality(traces, N=5, robust_std=False):
"""
traces: ndarray (n_cells x T)
N: number of consecutive samples
robust_std: use robust std estimate instead of simple RMS
"""
md = np.maximum(np.apply_along_axis(mode_robust, 1, traces), 0)
ff1 = (traces.T - md).T
ff1 = -ff1 * (ff1 < 0)
if robust_std:
sd_r = []
for row in ff1:
vals = row[row > 0]
if len(vals) == 0:
sd_r.append(1.0)
continue
iqr = np.percentile(vals, 75) - np.percentile(vals, 25)
sd_r.append(iqr / 1.349)
sd_r = np.array(sd_r) * 2
else:
Ns = (ff1 > 0).sum(axis=1)
sd_r = np.sqrt((ff1**2).sum(axis=1) / np.maximum(Ns, 1))
# compute z-scores relative to noise
z = (traces.T - md) / (3 * sd_r)
z = z.T
# tail probability of seeing value >= z under N(0,1)
p = 1 - norm.cdf(z)
p[p <= 0] = 1e-12
logp = np.log(p)
# moving sum over N consecutive samples
kernel = np.ones(N)
erfc = np.array([np.convolve(row, kernel, mode="same") for row in logp])
# fitness score = min(erfc) (lower = more exceptional)
fitness = erfc.min(axis=1)
return fitness, erfc, sd_r, md
def ops_to_json(ops: dict | str | Path, outpath=None, indent=2):
"""
Convert a Suite2p ops.npy file (or dict) to JSON.
Parameters
----------
ops : dict or str or Path
Either a loaded ops dictionary or the path to an ops.npy file.
outpath : str or Path, optional
Output path for ops.json. If None, saves as 'ops.json' in the same
directory as the input ops.npy (or current directory if ops is a dict).
indent : int
Indentation for JSON formatting.
Returns
-------
Path
Path to the written ops.json file.
"""
# Load dict if given a path
if isinstance(ops, (str, Path)):
ops_path = Path(ops)
if ops_path.is_dir():
ops_path = ops_path / "ops.npy"
if ops_path.suffix != ".npy":
raise ValueError(f"Expected .npy file, got {ops_path}")
ops_dict = np.load(ops_path, allow_pickle=True).item()
base_dir = ops_path.parent
elif isinstance(ops, dict):
ops_dict = ops
base_dir = Path.cwd()
else:
raise TypeError(f"`ops` must be dict, str, or Path, not {type(ops)}")
# Convert numpy types to JSON serializable
def _serialize(obj):
if isinstance(obj, (np.generic, np.bool_)):
return obj.item()
if isinstance(obj, np.ndarray):
return obj.tolist()
raise TypeError(f"Unserializable type {type(obj)}")
# Decide output path
if outpath is None:
outpath = base_dir / "ops.json"
else:
outpath = Path(outpath)
with open(outpath, "w") as f:
json.dump(ops_dict, f, indent=indent, default=_serialize)
print(f"Saved {outpath}")
return outpath
def normalize_traces(F, mode="percentile"):
"""
Normalize fluorescence traces F to [0, 1] range.
Parameters
----------
F : ndarray
2d array of fluorescence traces (n_neurons x n_timepoints).
mode : str
Normalization mode, either "per_neuron" or "percentile".
Returns
-------
F_norm : ndarray
Normalized fluorescence traces in [0, 1] range.
Notes
-----
- "per_neuron": scales each neuron's trace based on its own min and max.
- "percentile": scales each neuron's trace based on its 1st and 99th percentiles.
- If min == max for each cell, the trace is set to all zeros to avoid division by zero.
"""
F_norm = np.zeros_like(F, dtype=float)
if mode == "per_neuron":
for i in range(F.shape[0]):
f = F[i]
fmax = np.max(f)
fmin = np.min(f)
if fmax > fmin:
F_norm[i] = (f - fmin) / (fmax - fmin)
else:
F_norm[i] = f * 0
elif mode == "percentile":
for i in range(F.shape[0]):
f = F[i]
fmin = np.percentile(f, 1)
fmax = np.percentile(f, 99)
if fmax > fmin:
F_norm[i] = (f - fmin) / (fmax - fmin) # noqa
else:
F_norm[i] = f * 0
return F_norm
[docs]
def dff_rolling_percentile(f_trace, window_size=300, percentile=20, use_median_floor: bool=False):
"""
Compute ΔF/F₀ using a rolling percentile baseline.
Parameters:
-----------
f_trace : np.ndarray
(N_neurons, N_frames) fluorescence traces.
window_size : int
Size of the rolling window (in frames).
percentile : int
Percentile to use for baseline F₀ estimation.
use_median_floor : bool, optional
Set a minimum F₀ floor at 1% of the median fluorescence.
Returns:
--------
dff : np.ndarray
(N_neurons, N_frames) ΔF/F₀ traces.
"""
if not isinstance(f_trace, np.ndarray):
raise TypeError("f_trace must be a numpy array")
if f_trace.ndim != 2:
raise ValueError("f_trace must be a 2D array with shape (N_neurons, N_frames)")
if f_trace.shape[0] == 0 or f_trace.shape[1] == 0:
raise ValueError("f_trace must not be empty")
f0 = np.array(
[
percentile_filter(f, percentile, size=window_size, mode="nearest")
for f in f_trace
]
)
if use_median_floor:
floor = np.median(f_trace, axis=1, keepdims=True) * 0.01
f0 = np.maximum(f0, floor)
return (f_trace - f0) / (f0 + 1e-6) # 1e-6 to avoid division by zero
[docs]
def dff_shot_noise(dff, fr):
"""
Estimate the shot noise level of calcium imaging traces.
This metric quantifies the noise level based on frame-to-frame differences,
assuming slow calcium dynamics compared to the imaging frame rate. It was
introduced by Rupprecht et al. (2021) [1] as a standardized method for comparing
noise levels across datasets with different acquisition parameters.
The noise level :math:`\\nu` is computed as:
.. math::
\\nu = \\frac{\\mathrm{median}_t\\left( \\left| \\Delta F/F_{t+1} - \\Delta F/F_t \\right| \\right)}{\\sqrt{f_r}}
where
- :math:`\\Delta F/F_t` is the fluorescence trace at time :math:`t`
- :math:`f_r` is the imaging frame rate (in Hz).
Parameters
----------
dff : np.ndarray
Array of shape (n_neurons, n_frames), containing raw :math:`\\Delta F/F` traces
(percent units, **without neuropil subtraction**).
fr : float
Frame rate of the recording in Hz.
Returns
-------
np.ndarray
Noise level :math:`\\nu` for each neuron, expressed in %/√Hz units.
Notes
-----
- The metric relies on the slow dynamics of calcium signals compared to frame rate.
- Higher values of :math:`\\nu` indicate higher shot noise.
- Units are % divided by √Hz, and while unconventional, they enable comparison across frame rates.
References
----------
[1] Rupprecht et al., "Large-scale calcium imaging & noise levels",
A Neuroscientific Blog (2021).
https://gcamp6f.com/2021/10/04/large-scale-calcium-imaging-noise-levels/
"""
return np.median(np.abs(np.diff(dff, axis=1)), axis=1) / np.sqrt(fr)
[docs]
def load_planar_results(ops: dict | str | Path, z_plane: list | int = None) -> dict:
"""
Load stat, iscell, spks files and return as a dict. Does NOT filter by valid cells, array contain both
accepted and rejected neurons. Filter for accepted-only via f[iscell] or fneue[iscell] if needed.
Parameters
----------
ops : dict, str or Path
Dict of or path to the ops.npy file. Can be a fully qualified path or a directory containing ops.npy.
z_plane : int or None, optional
the z-plane index for this file. If provided, it is stored in the output.
Returns
-------
dict
dictionary with keys:
- 'F': fluorescence traces loaded from F.npy,
- 'Fneu': neuropil fluorescence traces loaded from Fneu.npy,
- 'spks': spike traces loaded from spks.npy,
- 'stat': stats loaded from stat.npy,
- 'iscell': boolean array from iscell.npy,
- 'cellprob': cell probability from classifier.
- 'z_plane': an array (of shape [n_neurons,]) with the provided z_plane index.
See Also
--------
lbm_suite2p_python.load_ops
lbm_suite2p_python.load_traces
"""
if isinstance(ops, list):
raise ValueError(f"Input should not be a list!")
if isinstance(ops, (str, Path)):
if Path(ops).is_dir():
ops = Path(ops).joinpath("ops.npy")
if not ops.exists():
raise FileNotFoundError(f"ops.npy not found in given directory: {ops}")
output_ops = load_ops(ops)
save_path = Path(output_ops["save_path"])
# Check all required files exist
required_files = {
"F.npy": save_path / "F.npy",
"Fneu.npy": save_path / "Fneu.npy",
"spks.npy": save_path / "spks.npy",
"stat.npy": save_path / "stat.npy",
"iscell.npy": save_path / "iscell.npy",
}
missing_files = [name for name, path in required_files.items() if not path.exists()]
if missing_files:
raise FileNotFoundError(
f"Missing required files in {save_path}: {', '.join(missing_files)}"
)
F = np.load(required_files["F.npy"])
Fneu = np.load(required_files["Fneu.npy"])
spks = np.load(required_files["spks.npy"])
stat = np.load(required_files["stat.npy"], allow_pickle=True)
iscell = np.load(required_files["iscell.npy"], allow_pickle=True)[:, 0].astype(
bool
)
cellprob = np.load(required_files["iscell.npy"], allow_pickle=True)[:, 1]
# model = np.load(save_path.joinpath("model.npy"), allow_pickle=True).item()
n_neurons = spks.shape[0]
if z_plane is None:
z_plane_arr = output_ops.get("plane", np.zeros(n_neurons, dtype=int))
else:
z_plane_arr = np.full(n_neurons, z_plane, dtype=int)
return {
"F": F,
"Fneu": Fneu,
"spks": spks,
"stat": stat,
"iscell": iscell,
"cellprob": cellprob,
"z_plane": z_plane_arr,
# "rastermap_model": model,
}
[docs]
def load_ops(ops_input: str | Path | list[str | Path]) -> dict:
"""Simple utility load a suite2p npy file"""
if isinstance(ops_input, (str, Path)):
return np.load(ops_input, allow_pickle=True).item()
elif isinstance(ops_input, dict):
return ops_input
print("Warning: No valid ops file provided, returning empty dict.")
return {}
def load_traces(ops):
"""
Load fluorescence traces and related data from an ops file directory and return valid cells.
This function loads the raw fluorescence traces, neuropil traces, and spike data from the directory
specified in the ops dictionary. It also loads the 'iscell' file and returns only the traces corresponding
to valid cells (i.e. where iscell is True).
Parameters
----------
ops : dict
Dictionary containing at least the key 'save_path', which specifies the directory where the following
files are stored: 'F.npy', 'Fneu.npy', 'spks.npy', and 'iscell.npy'.
Returns
-------
F_valid : ndarray
Array of fluorescence traces for valid cells (n_valid x n_timepoints).
Fneu_valid : ndarray
Array of neuropil fluorescence traces for valid cells (n_valid x n_timepoints).
spks_valid : ndarray
Array of spike data for valid cells (n_valid x n_timepoints).
Notes
-----
The 'iscell.npy' file is expected to be an array where the first column (iscell[:, 0]) contains
boolean values indicating valid cells.
"""
save_path = Path(ops['save_path'])
F = np.load(save_path.joinpath('F.npy'))
Fneu = np.load(save_path.joinpath('Fneu.npy'))
spks = np.load(save_path.joinpath('spks.npy'))
iscell = np.load(save_path.joinpath('iscell.npy'), allow_pickle=True)[:, 0].astype(bool)
F_valid = F[iscell]
Fneu_valid = Fneu[iscell]
spks_valid = spks[iscell]
return F_valid, Fneu_valid, spks_valid