Decay Time Constants (Tau) in Calcium Imaging Spike Inference Pipelines#
Most calcium imaging pipelines model neural activity as an exponential decay process following each spike, making τ a key hyperparameter.
This guide summarizes in vivo τ values used or recommended by leading spike inference algorithms — FOOPSI, OASIS, Suite2p, CaImAn, and CASCADE — as reported in peer-reviewed literature and official documentation:contentReference[oaicite:0]{index=0}.
FOOPSI (Fast Non-Negative Deconvolution)#
FOOPSI (Vogelstein 2010) introduced probabilistic inference of spike trains using an exponential calcium model:
where ( \gamma = e^{-\Delta t / \tau} ) defines the decay rate.
In in vivo work, FOOPSI typically assumes τ ≈ 1.0 s for GCaMP3–GCaMP5 indicators:contentReference[oaicite:1]{index=1}, which display relatively slow kinetics.
This constant was fixed across datasets and used to calibrate spike likelihood.
OASIS and CNMF (Pnevmatikakis & Friedrich, 2016–2017)#
OASIS improved upon FOOPSI by introducing a convex optimization solver for AR(1)/AR(2) calcium models (Friedrich 2017).
τ is explicitly passed as a parameter in seconds, often derived from indicator kinetics:contentReference[oaicite:2]{index=2}.
Indicator  | 
τ (s)  | 
Notes  | 
Reference  | 
|---|---|---|---|
GCaMP6f  | 
0.5 – 0.7  | 
Fast kinetics  | 
|
GCaMP6m  | 
1.0 – 1.3  | 
Medium decay  | 
|
GCaMP6s  | 
1.5 – 2.0  | 
Slow kinetics  | 
|
GCaMP7f  | 
~0.45  | 
Very fast  | 
|
GCaMP8f/m  | 
0.2 – 0.3  | 
Modern fast sensors  | 
|
GCaMP8s  | 
~0.5  | 
Slow variant  | 
Fast (6f): 0.5 s Medium (6m): 1.1 s Slow (6s): 1.8 s
7f: 0.45 s 7s: 1.0 s 7c: 0.8 s
8f: 0.25 s 8m: 0.3 s 8s: 0.5 s
Suite2p Spike Deconvolution#
Suite2p’s deconvolution module wraps OASIS, using τ as an internal parameter:contentReference[oaicite:3]{index=3}.
Default values in Suite2p documentation are:
Indicator  | 
Recommended τ (s)  | 
Reference  | 
|---|---|---|
GCaMP6f  | 
0.7  | 
|
GCaMP6m  | 
1.0  | 
|
GCaMP6s  | 
1.25 – 1.5  | 
In in vivo datasets from Dana 2019, these τ values accurately reproduce spike rates for PbN and cortical neurons.
Suite2p applies the same τ≈0.7 s default for red indicators like jRGECO1a (GitHub #233).
CaImAn (CNMF-E Pipeline)#
CaImAn (Giovannucci 2019) uses a similar CNMF model to Suite2p but allows τ tuning within its CNMF-E fitting stage:contentReference[oaicite:4]{index=4}.
Indicator  | 
τ (s)  | 
Implementation Notes  | 
|---|---|---|
GCaMP6f  | 
0.4 – 0.7  | 
Default for fast decay  | 
GCaMP6m  | 
1.0 – 1.2  | 
Standard for medium kinetics  | 
GCaMP6s  | 
1.5 – 2.0  | 
Slow indicator decay  | 
In most datasets, τ=0.4 s captures fast transients well, while slower indicators require τ > 1 s for stability (Friedrich 2017).
CASCADE (Deep Learning Inference)#
CASCADE (Rupprecht 2021) uses supervised networks trained on simultaneous electrophysiology and calcium data.
τ is not explicitly specified but implicitly learned from training data:contentReference[oaicite:5]{index=5}.
Original 2021 models were trained on GCaMP6 data (τ≈1–2 s).
Updated 2025 versions retrained on GCaMP8f/m/s achieved optimal inference with effective τ ≈ 0.3–0.5 s:contentReference[oaicite:6]{index=6}.
Summary#
Pipeline  | 
Uses τ?  | 
Range (s)  | 
Method  | 
Reference  | 
|---|---|---|---|---|
FOOPSI  | 
Yes  | 
~1.0  | 
Fixed exponential  | 
|
OASIS / CNMF  | 
Yes  | 
0.3 – 2.0  | 
AR(1/2) model  | 
|
Suite2p  | 
Yes  | 
0.7 – 1.5  | 
OASIS internal  | 
|
CaImAn  | 
Yes  | 
0.4 – 2.0  | 
CNMF-E fit  | 
|
CASCADE  | 
Implicit  | 
0.3 – 2.0  | 
Learned dynamics  | 
τ defines calcium transient decay and sets temporal resolution of spike inference
Optimal τ depends on both indicator kinetics and frame rate
Pipelines like Suite2p and CaImAn require τ tuning per GECI
CASCADE bypasses explicit τ by learning it implicitly
GCaMP8 series are ~3× faster than GCaMP6
Notes#
All τ values summarized here reflect in vivo mammalian calcium imaging (typically ~30 Hz frame rate).
In vitro or temperature-controlled decay times (e.g., 37 °C) can be >10× shorter.
Choosing an incorrect τ biases both spike amplitude and inferred firing rate:contentReference[oaicite:7]{index=7}.
Primary Sources:
Vogelstein 2010 (FOOPSI) ·
Pnevmatikakis 2016 (CNMF) ·
Friedrich 2017 (OASIS) ·
Giovannucci 2019 (CaImAn) ·
Suite2p Docs ·
Dana 2019 (GCaMP7) ·
Rupprecht 2021 & 2025 (CASCADE)