Source code for lbm_caiman_python.default_ops

"""
default caiman parameters for lbm data processing.
"""


[docs] def default_ops() -> dict: """ return default caiman parameters optimized for lbm microscopy data. returns ------- dict dictionary of parameters for motion correction and cnmf. """ return { # motion correction parameters "do_motion_correction": True, "max_shifts": (6, 6), "strides": (48, 48), "overlaps": (24, 24), "max_deviation_rigid": 3, "pw_rigid": True, "gSig_filt": (2, 2), "border_nan": "copy", "niter_rig": 1, "splits_rig": 14, "num_splits_to_process_rig": None, "splits_els": 14, "num_splits_to_process_els": None, "upsample_factor_grid": 4, "max_deviation_rigid": 3, "use_cuda": False, # cnmf parameters "do_cnmf": True, "K": 50, "gSig": (4, 4), "gSiz": None, "p": 1, "merge_thresh": 0.8, "min_SNR": 2.5, "rval_thr": 0.85, "decay_time": 0.4, "method_init": "greedy_roi", "ssub": 1, "tsub": 1, "rf": None, "stride": None, "nb": 1, "gnb": 1, "low_rank_background": True, "update_background_components": True, "rolling_sum": True, "only_init": False, "normalize_init": True, "ring_size_factor": 1.5, # component evaluation "min_cnn_thr": 0.9, "cnn_lowest": 0.1, "use_cnn": False, # general parameters "fr": 30.0, "n_processes": None, "dxy": (1.0, 1.0), }
[docs] def mcorr_ops() -> dict: """return only motion correction parameters.""" ops = default_ops() return {k: v for k, v in ops.items() if k in ( "do_motion_correction", "max_shifts", "strides", "overlaps", "max_deviation_rigid", "pw_rigid", "gSig_filt", "border_nan", "niter_rig", "splits_rig", "num_splits_to_process_rig", "splits_els", "num_splits_to_process_els", "upsample_factor_grid", "use_cuda", "fr", "n_processes", "dxy", )}
[docs] def cnmf_ops() -> dict: """return only cnmf parameters.""" ops = default_ops() return {k: v for k, v in ops.items() if k in ( "do_cnmf", "K", "gSig", "gSiz", "p", "merge_thresh", "min_SNR", "rval_thr", "decay_time", "method_init", "ssub", "tsub", "rf", "stride", "nb", "gnb", "low_rank_background", "update_background_components", "rolling_sum", "only_init", "normalize_init", "ring_size_factor", "min_cnn_thr", "cnn_lowest", "use_cnn", "fr", "n_processes", "dxy", )}