from __future__ import annotations
import re
import json
import os
from pathlib import Path
import numpy as np
import tifffile
from mbo_utilities import get_files
def _params_from_metadata_caiman(metadata):
"""
Generate parameters for CNMF from metadata.
Based on the pixel resolution and frame rate, the parameters are set to reasonable values.
Parameters
----------
metadata : dict
Metadata dictionary resulting from `lcp.get_metadata()`.
Returns
-------
dict
Dictionary of parameters for lbm_mc.
"""
params = _default_params_caiman()
if metadata is None:
print("No metadata found. Using default parameters.")
return params
params["main"]["fr"] = metadata["frame_rate"]
params["main"]["dxy"] = metadata["pixel_resolution"]
# typical neuron ~16 microns
gSig = round(16 / metadata["pixel_resolution"][0]) / 2
params["main"]["gSig"] = (int(gSig), int(gSig))
gSiz = (4 * gSig + 1, 4 * gSig + 1)
params["main"]["gSiz"] = gSiz
max_shifts = [int(round(10 / px)) for px in metadata["pixel_resolution"]]
params["main"]["max_shifts"] = max_shifts
strides = [int(round(64 / px)) for px in metadata["pixel_resolution"]]
params["main"]["strides"] = strides
# overlap should be ~neuron diameter
overlaps = [int(round(gSig / px)) for px in metadata["pixel_resolution"]]
if overlaps[0] < gSig:
print("Overlaps too small. Increasing to neuron diameter.")
overlaps = [int(gSig)] * 2
params["main"]["overlaps"] = overlaps
rf_0 = (strides[0] + overlaps[0]) // 2
rf_1 = (strides[1] + overlaps[1]) // 2
rf = int(np.mean([rf_0, rf_1]))
stride = int(np.mean([overlaps[0], overlaps[1]]))
params["main"]["rf"] = rf
params["main"]["stride"] = stride
return params
def _default_params_caiman():
"""
Default parameters for both registration and CNMF.
The exception is gSiz being set relative to gSig.
Returns
-------
dict
Dictionary of default parameter values for registration and segmentation.
Notes
-----
This will likely change as CaImAn is updated.
"""
gSig = 6
gSiz = (4 * gSig + 1, 4 * gSig + 1)
return {
"main": {
# Motion correction parameters
"pw_rigid": True,
"max_shifts": [6, 6],
"strides": [64, 64],
"overlaps": [8, 8],
"min_mov": None,
"gSig_filt": [0, 0],
"max_deviation_rigid": 3,
"border_nan": "copy",
"splits_els": 14,
"upsample_factor_grid": 4,
"use_cuda": False,
"num_frames_split": 50,
"niter_rig": 1,
"is3D": False,
"splits_rig": 14,
"num_splits_to_process_rig": None,
# CNMF parameters
"fr": 10,
"dxy": (1.0, 1.0),
"decay_time": 0.4,
"p": 2,
"nb": 3,
"K": 20,
"rf": 64,
"stride": [8, 8],
"gSig": gSig,
"gSiz": gSiz,
"method_init": "greedy_roi",
"rolling_sum": True,
"use_cnn": False,
"ssub": 1,
"tsub": 1,
"merge_thr": 0.7,
"bas_nonneg": True,
"min_SNR": 1.4,
"rval_thr": 0.8,
},
"refit": True,
}
def _params_from_metadata_suite2p(metadata, ops):
"""
Tau is 0.7 for GCaMP6f, 1.0 for GCaMP6m, 1.25-1.5 for GCaMP6s
"""
if metadata is None:
print("No metadata found. Using default parameters.")
return ops
# typical neuron ~16 microns
ops["fs"] = metadata["frame_rate"]
ops["nplanes"] = 1
ops["nchannels"] = 1
ops["do_bidiphase"] = 0
ops["do_regmetrics"] = True
# suite2p iterates each plane and takes ops['dxy'][i] where i is the plane index
ops["dx"] = [metadata["pixel_resolution"][0]]
ops["dy"] = [metadata["pixel_resolution"][1]]
return ops
def report_missing_metadata(file: os.PathLike | str):
tiff_file = tifffile.TiffFile(file)
if not tiff_file.software == "SI":
print(f"Missing SI software tag.")
if not tiff_file.description[:6] == "state.":
print(f"Missing 'state' software tag.")
if not "scanimage.SI" in tiff_file.description[-256:]:
print(f"Missing 'scanimage.SI' in description tag.")
def has_mbo_metadata(file: os.PathLike | str) -> bool:
"""
Check if a TIFF file has metadata from the Miller Brain Observatory.
Specifically, this checks for tiff_file.shaped_metadata, which is used to store system and user
supplied metadata.
Parameters
----------
file: os.PathLike
Path to the TIFF file.
Returns
-------
bool
True if the TIFF file has MBO metadata; False otherwise.
"""
if not file or not isinstance(file, (str, os.PathLike)):
raise ValueError(
"Invalid file path provided: must be a string or os.PathLike object."
f"Got: {file} of type {type(file)}"
)
# Tiffs
if Path(file).suffix in [".tif", ".tiff"]:
try:
tiff_file = tifffile.TiffFile(file)
if (
hasattr(tiff_file, "shaped_metadata")
and tiff_file.shaped_metadata is not None
):
return True
else:
return False
except Exception:
return False
return False
def is_raw_scanimage(file: os.PathLike | str) -> bool:
"""
Check if a TIFF file is a raw ScanImage TIFF.
Parameters
----------
file: os.PathLike
Path to the TIFF file.
Returns
-------
bool
True if the TIFF file is a raw ScanImage TIFF; False otherwise.
"""
if not file or not isinstance(file, (str, os.PathLike)):
return False
elif Path(file).suffix not in [".tif", ".tiff"]:
return False
try:
tiff_file = tifffile.TiffFile(file)
if (
# TiffFile.shaped_metadata is where we store metadata for processed tifs
# if this is not empty, we have a processed file
# otherwise, we have a raw scanimage tiff
hasattr(tiff_file, "shaped_metadata")
and tiff_file.shaped_metadata is not None
and isinstance(tiff_file.shaped_metadata, (list, tuple))
):
return False
else:
if tiff_file.scanimage_metadata is None:
print(f"No ScanImage metadata found in {file}.")
return False
return True
except Exception:
return False
def get_metadata_single(file: os.PathLike | str, z_step=None, verbose=False):
"""
Extract metadata from a TIFF file produced by ScanImage or processed via the save_as function.
This function opens the given TIFF file and retrieves critical imaging parameters and acquisition details.
It supports both raw ScanImage TIFFs and those modified by downstream processing. If the file contains
raw ScanImage metadata, the function extracts key fields such as channel information, number of frames,
field-of-view, pixel resolution, and ROI details. When verbose output is enabled, the complete metadata
document is returned in addition to the parsed key values.
Parameters
----------
file : os.PathLike or str
The full path to the TIFF file from which metadata is to be extracted.
verbose : bool, optional
If True, returns an extended metadata dictionary that includes all available ScanImage attributes.
Default is False.
z_step : float, optional
The z-step size in microns. If provided, it will be included in the returned metadata.
Returns
-------
dict
A dictionary containing the extracted metadata (e.g., number of planes, frame rate, field-of-view,
pixel resolution). When verbose is True, the dictionary also includes a key "all" with the full metadata
from the TIFF header.
Raises
------
ValueError
If no recognizable metadata is found in the TIFF file (e.g., the file is not a valid ScanImage TIFF).
Notes
-----
- num_frames represents the number of frames per z-plane
Examples
--------
>>> mdata = get_metadata("path/to/rawscan_00001.tif")
>>> print(mdata["num_frames"])
5345
>>> mdata = get_metadata("path/to/assembled_data.tif")
>>> print(mdata["shape"])
(14, 5345, 477, 477)
>>> meta_verbose = get_metadata("path/to/scanimage_file.tif", verbose=True)
>>> print(meta_verbose["all"])
{... Includes all ScanImage FrameData ...}
"""
tiff_file = tifffile.TiffFile(file)
if not is_raw_scanimage(file):
if (
not hasattr(tiff_file, "shaped_metadata")
or tiff_file.shaped_metadata is None
):
raise ValueError(f"No metadata found in {file}.")
return tiff_file.shaped_metadata[0]
elif hasattr(tiff_file, "scanimage_metadata"):
meta = tiff_file.scanimage_metadata
if meta is None:
return None
si = meta.get("FrameData", {})
if not si:
print(f"No FrameData found in {file}.")
return None
series = tiff_file.series[0]
# Extract ROI and imaging metadata
roi_group = meta["RoiGroups"]["imagingRoiGroup"]["rois"]
if isinstance(roi_group, dict):
num_rois = 1
roi_group = [roi_group]
else:
num_rois = len(roi_group)
num_planes = len(si["SI.hChannels.channelSave"])
zoom_factor = si["SI.hRoiManager.scanZoomFactor"]
uniform_sampling = si["SI.hScan2D.uniformSampling"]
if num_rois > 1:
try:
sizes = [
roi_group[i]["scanfields"][i]["sizeXY"] for i in range(num_rois)
]
num_pixel_xys = [
roi_group[i]["scanfields"][i]["pixelResolutionXY"]
for i in range(num_rois)
]
except KeyError:
sizes = [roi_group[i]["scanfields"]["sizeXY"] for i in range(num_rois)]
num_pixel_xys = [
roi_group[i]["scanfields"]["pixelResolutionXY"]
for i in range(num_rois)
]
size_xy = sizes[0]
num_pixel_xy = num_pixel_xys[0]
else:
size_xy = [roi_group[0]["scanfields"]["sizeXY"]][0]
num_pixel_xy = [roi_group[0]["scanfields"]["pixelResolutionXY"]][0]
# TIFF header-derived metadata
objective_resolution = si["SI.objectiveResolution"]
frame_rate = si["SI.hRoiManager.scanFrameRate"]
# Field-of-view calculations
# TODO: We may want an FOV measure that takes into account contiguous ROIs
# As of now, this is for a single ROI
fov_x_um = round(objective_resolution * size_xy[0]) # in microns
fov_y_um = round(objective_resolution * size_xy[1]) # in microns
fov_roi_um = (fov_x_um, fov_y_um) # in microns
pixel_resolution = (fov_x_um / num_pixel_xy[0], fov_y_um / num_pixel_xy[1])
metadata = {
"num_planes": num_planes,
"num_rois": num_rois,
"fov": fov_roi_um, # in microns
"fov_px": tuple(num_pixel_xy),
"frame_rate": frame_rate,
"pixel_resolution": np.round(pixel_resolution, 2),
"ndim": series.ndim,
"dtype": "int16",
"size": series.size,
"roi_width_px": num_pixel_xy[0],
"roi_height_px": num_pixel_xy[1],
"objective_resolution": objective_resolution,
"zoom_factor": zoom_factor,
"uniform_sampling": uniform_sampling,
}
if z_step is not None:
metadata["z_step"] = z_step
if verbose:
metadata["all"] = meta
return metadata
else:
return metadata
else:
raise ValueError(f"No metadata found in {file}.")
def get_metadata_batch(file_paths: list | tuple, z_step=None, verbose=False):
"""
Extract and aggregate metadata from a list of TIFF files.
Parameters
----------
file_paths : list of Path
List of TIFF file paths.
z_step : float, optional
Z-step in microns.
verbose : bool, optional
Include full metadata from first file if True.
Returns
-------
dict
Aggregated metadata with per-file frame information.
"""
if not file_paths:
raise ValueError("No files provided")
tiff_pages_per_file = []
frames_per_file = []
file_path_strings = []
first_meta = None
print(f"Processing {len(file_paths)} files...")
for i, file_path in enumerate(file_paths):
try:
file_meta = get_metadata_single(file_path, z_step=z_step, verbose=verbose)
if file_meta is None:
print(f"Warning: No metadata found in {file_path}. Skipping.")
continue
if i == 0:
first_meta = file_meta.copy()
n_pages = len(tifffile.TiffFile(file_path).pages)
tiff_pages_per_file.append(n_pages)
frames_per_file.append(int(n_pages / file_meta.get("num_planes")))
file_path_strings.append(str(file_path))
except Exception as e:
print(f"Warning: Could not process {file_path}: {e}")
continue
total_frames = sum(frames_per_file)
first_meta.update(
{
"num_frames": total_frames,
"frames_per_file": frames_per_file,
"tiff_pages_per_file": tiff_pages_per_file,
"file_paths": file_path_strings,
"num_files": len(file_paths),
}
)
print(f"Total: {total_frames} frames across {len(file_paths)} files")
return first_meta
def params_from_metadata(metadata, base_ops, pipeline="suite2p"):
"""
Use metadata to get sensible default pipeline parameters.
If ops are not provided, uses suite2p.default_ops(). Sets framerate, pixel resolution, and do_metrics=True.
Parameters
----------
metadata : dict
Result of mbo.get_metadata()
base_ops : dict
Ops dict to use as a base.
pipeline : str, optional
The pipeline to use. Default is "suite2p".
"""
if pipeline.lower() == "caiman":
print("Warning: CaImAn is not stable, proceed at your own risk.")
return _params_from_metadata_caiman(metadata)
elif pipeline.lower() == "suite2p":
print("Setting pipeline to suite2p")
return _params_from_metadata_suite2p(metadata, base_ops)
else:
raise ValueError(
f"Pipeline {pipeline} not recognized. Use 'caiman' or 'suite2'"
)
def find_scanimage_metadata(path):
with tifffile.TiffFile(path) as tif:
if hasattr(tif, "scanimage_metadata"):
return tif.scanimage_metadata
p = tif.pages[0]
cand = []
for tag in ("ImageDescription", "Software"):
if tag in p.tags:
cand.append(p.tags[tag].value)
if getattr(p, "description", None):
cand.append(p.description)
cand.extend(str(tif.__dict__.get(k, "")) for k in tif.__dict__)
for s in cand:
if isinstance(s, bytes):
s = s.decode(errors="ignore")
m = re.search(r"{.*ScanImage.*}", s, re.S)
if m:
try:
return json.loads(m.group(0))
except Exception:
return m.group(0)
return None
def diff_metadata(g1: dict, g2: dict) -> dict:
diff = {}
keys = set(g1) | set(g2)
for key in keys:
v1 = g1.get(key)
v2 = g2.get(key)
if isinstance(v1, dict) and isinstance(v2, dict):
subdiff = diff_metadata(v1, v2)
if subdiff:
diff[key] = subdiff
elif v1 != v2:
diff[key] = {"g1": v1, "g2": v2}
return diff
def clean_scanimage_metadata(meta: dict) -> dict:
"""
Build a JSON-serializable, nicely nested dict from a ScanImage-style metadata dict.
- Keeps ALL top-level (non-'si') keys after cleaning (remove empties, NaNs/inf, empty arrays/strings).
- Includes the full `si` subtree (cleaned), preserving e.g. 'RoiGroups'.
- Additionally nests any flat 'SI.*' keys found anywhere under the 'si' subtree:
* If they are inside meta['si']['FrameData'], they become si['FrameData']['SI'][...nested...]
* If 'SI.*' keys appear elsewhere in the tree, they are nested under a top-level 'SI' root.
"""
def _clean(x):
if x is None:
return None
if isinstance(x, (np.generic,)):
x = x.item()
if isinstance(x, np.ndarray):
if x.size == 0:
return None
x = x.tolist()
if isinstance(x, float):
if not np.isfinite(x):
return None
return x
if isinstance(x, (int, bool)):
return x
if isinstance(x, str):
s = x.strip()
return s if s != "" else None
if isinstance(x, (list, tuple)):
out = []
for v in x:
cv = _clean(v)
if cv is not None:
out.append(cv)
return out if out else None
if isinstance(x, dict):
out = {}
for k, v in x.items():
cv = _clean(v)
if cv is not None:
out[str(k)] = cv
return out if out else None
try:
json.dumps(x)
return x
except Exception:
return None
def _prune(d):
if not isinstance(d, dict):
return d
for k in list(d.keys()):
v = d[k]
if isinstance(v, dict):
pv = _prune(v)
if pv and len(pv) > 0:
d[k] = pv
else:
d.pop(k, None)
elif v in (None, [], ""):
d.pop(k, None)
return d
def _collect_SI_pairs(node, path=()):
out = []
if isinstance(node, dict):
for k, v in node.items():
if isinstance(k, str) and k.startswith("SI."):
out.append((".".join((k,)), v, path)) # store key, value, and where we found it
out.extend(_collect_SI_pairs(v, path + (k,)))
elif isinstance(node, (list, tuple)):
for i, v in enumerate(node):
out.extend(_collect_SI_pairs(v, path + (f"[{i}]",)))
return out
def _nest_into(root_dict, dotted_key, value, keep_root_SI=True):
parts = dotted_key.split(".")
# parts[0] should be "SI"
start = 0 if keep_root_SI else 1
cur = root_dict
for p in parts[start:-1]:
p = p.split("[")[0]
cur = cur.setdefault(p, {})
leaf = parts[-1].split("[")[0]
cur[leaf] = _clean(value)
# 1) Start with cleaned copy of ALL top-level non-'si' keys.
result = {}
for k, v in meta.items():
if k == "si":
continue
cv = _clean(v)
if cv is not None:
result[k] = cv
# 2) Bring in the 'si' subtree (cleaned) as-is (so 'RoiGroups' is preserved).
si_clean = None
if isinstance(meta.get("si"), dict):
si_clean = _clean(meta["si"])
if si_clean is not None:
result["si"] = si_clean
else:
result["si"] = {}
# 3) Find *all* 'SI.*' keys anywhere, and nest them.
# If they are under meta['si']['FrameData'], put them into result['si']['FrameData']['SI'][...]
# Otherwise, collect them under a top-level 'SI' in the result.
si_pairs = _collect_SI_pairs(meta)
if si_pairs:
# Ensure containers exist where needed
if "si" not in result or not isinstance(result["si"], dict):
result["si"] = {}
si_framedata = result["si"].setdefault("FrameData", {})
si_framedata_SI = si_framedata.setdefault("SI", {})
top_SI = result.setdefault("SI", {})
for dotted_key, val, where in si_pairs:
# Check if this came from under ['si']['FrameData']
if len(where) >= 2 and where[0] == "si" and where[1] == "FrameData":
_nest_into(si_framedata_SI, dotted_key, val, keep_root_SI=False)
else:
_nest_into(top_SI, dotted_key, val, keep_root_SI=True)
# If the top-level 'SI' ended up empty after cleaning/pruning, drop it.
if not _prune(top_SI):
result.pop("SI", None)
# 4) Final prune pass
return _prune(result)
def save_metadata_html(
meta: dict,
out_html: str | Path,
title: str = "ScanImage Metadata",
inline_max_chars: int = 200
):
"""
Clean + render metadata to a collapsible HTML tree with search and expand/collapse all.
Lists/tuples are shown inline (compact), truncated past `inline_max_chars` with a tooltip.
This is the most absurd code ever produced by AI.
"""
cleaned = clean_scanimage_metadata(meta) # relies on your function being defined
def esc(s: str) -> str:
return (
str(s)
.replace("&", "&")
.replace("<", "<")
.replace(">", ">")
)
def _inline_repr(val) -> str:
"""Compact, inline representation for leaves (lists/tuples/values)."""
# Tuples: render with parentheses
if isinstance(val, tuple):
try:
body = ", ".join(_inline_repr(x) if isinstance(x, (list, tuple)) else json.dumps(x)
for x in val)
except TypeError:
body = json.dumps(list(val), separators=(',', ': '))
s = f"({body})"
# Lists and everything else JSON-able: compact JSON
elif isinstance(val, list):
s = json.dumps(val, separators=(',', ': '))
elif isinstance(val, (dict,)): # shouldn’t hit here for leaf handler, but safe
s = json.dumps(val, separators=(',', ': '))
else:
try:
s = json.dumps(val)
except Exception:
s = str(val)
# Truncate for very long strings but keep full in title
if len(s) > inline_max_chars:
return f"<span class='inline' title='{esc(s)}'>{esc(s[:inline_max_chars])}…</span>"
return f"<span class='inline'>{esc(s)}</span>"
def render_dict(d: dict, level: int = 0):
keys = sorted(d.keys(), key=lambda k: (not isinstance(k, str), str(k)))
html = []
for k in keys:
v = d[k]
if isinstance(v, dict):
html.append(
f"""
<details class="node" data-key="{esc(k)}" {'' if level else 'open'}>
<summary><span class="k">{esc(k)}</span> <span class="badge">dict</span></summary>
<div class="child">
{render_dict(v, level+1)}
</div>
</details>
"""
)
else:
html.append(
f"""
<div class="leaf-row" data-key="{esc(k)}">
<span class="k">{esc(k)}</span>
<span class="sep">:</span>
{_inline_repr(v)}
</div>
"""
)
return "\n".join(html)
tree_html = render_dict(cleaned)
# ---- Assemble page -------------------------------------------------------
css = """
:root {
--bg:#0e1116; --fg:#e6edf3; --muted:#9aa5b1; --accent:#4aa3ff; --badge:#293241;
--mono:#e6edf3; --panel:#151a22; --border:#222a35; --hl:#0b6bcb33;
}
* { box-sizing:border-box; font-family: ui-monospace, SFMono-Regular, Menlo, Consolas, "Liberation Mono", monospace; }
body { margin:0; background:var(--bg); color:var(--fg); }
header { position:sticky; top:0; background:linear-gradient(180deg, rgba(14,17,22,.98), rgba(14,17,22,.94)); border-bottom:1px solid var(--border); padding:12px 16px; z-index:10; }
h1 { margin:0 0 8px 0; font-size:16px; font-weight:700; }
.controls { display:flex; gap:8px; align-items:center; flex-wrap:wrap; }
input[type="search"] { background:var(--panel); color:var(--fg); border:1px solid var(--border); border-radius:8px; padding:8px 10px; width:360px; }
button { background:var(--panel); color:var(--fg); border:1px solid var(--border); border-radius:8px; padding:8px 10px; cursor:pointer; }
button:hover { border-color:var(--accent); }
main { padding:16px; }
summary { cursor:pointer; padding:6px 8px; border-radius:8px; }
summary:hover { background:var(--hl); }
.node { border-left:2px solid var(--border); margin:4px 0 4px 8px; padding-left:10px; }
.child { margin-left:4px; padding-left:6px; border-left:1px dotted var(--border); }
.k { color:var(--fg); font-weight:700; }
.badge { font-size:11px; background:var(--badge); color:var(--muted); border:1px solid var(--border); padding:2px 6px; border-radius:999px; margin-left:8px; }
.leaf-row { padding:2px 6px; display:flex; gap:6px; align-items:flex-start; border-left:2px solid transparent; }
.leaf-row:hover { background:var(--hl); border-left-color:var(--accent); border-radius:6px; }
.inline { color:var(--mono); white-space:pre-wrap; word-break:break-word; }
summary::-webkit-details-marker { display:none; }
mark { background:#ffe08a44; color:inherit; padding:0 2px; border-radius:3px; }
footer { color:var(--muted); font-size:12px; padding:12px 16px; border-top:1px solid var(--border); }
"""
js = """
(function(){
const q = document.getElementById('search');
const btnExpand = document.getElementById('expandAll');
const btnCollapse = document.getElementById('collapseAll');
function normalize(s){ return (s||'').toLowerCase(); }
function highlight(text, term){
if(!term) return text;
const esc = (s)=>s.replace(/[.*+?^${}()|[\\]\\\\]/g, '\\\\$&');
const re = new RegExp(esc(term), 'ig');
return text.replace(re, m => `<mark>${m}</mark>`);
}
function filter(term){
const t = normalize(term);
document.querySelectorAll('.leaf-row').forEach(row=>{
const key = normalize(row.getAttribute('data-key'));
const val = row.querySelector('.inline')?.textContent || '';
const hit = key.includes(t) || normalize(val).includes(t);
row.style.display = hit ? '' : 'none';
const k = row.querySelector('.k');
if(k){ k.innerHTML = highlight(k.textContent, term); }
});
document.querySelectorAll('details.node').forEach(node=>{
const rows = node.querySelectorAll('.leaf-row');
const kids = node.querySelectorAll('details.node');
let anyVisible = false;
rows.forEach(r => { if(r.style.display !== 'none') anyVisible = true; });
kids.forEach(k => { if(k.style.display !== 'none') anyVisible = true; });
node.style.display = anyVisible ? '' : 'none';
const sum = node.querySelector('summary .k');
if(sum){ sum.innerHTML = highlight(sum.textContent, term); }
if(t && anyVisible) node.open = true;
});
}
q.addEventListener('input', (e)=>filter(e.target.value));
document.getElementById('expandAll').addEventListener('click', ()=>{
document.querySelectorAll('details').forEach(d=> d.open = true);
});
document.getElementById('collapseAll').addEventListener('click', ()=>{
document.querySelectorAll('details').forEach(d=> d.open = false);
});
})();
"""
html = f"""<!doctype html>
<html>
<head>
<meta charset="utf-8">
<title>{esc(title)}</title>
<meta name="viewport" content="width=device-width,initial-scale=1">
<style>{css}</style>
</head>
<body>
<header>
<h1>{esc(title)}</h1>
<div class="controls">
<input id="search" type="search" placeholder="Search keys/values..." />
<button id="expandAll">Expand all</button>
<button id="collapseAll">Collapse all</button>
</div>
</header>
<main>
{tree_html}
</main>
<footer>
Saved from Python — clean & render for convenient browsing.
</footer>
<script>{js}</script>
</body>
</html>"""
out_html = Path(out_html)
out_html.parent.mkdir(parents=True, exist_ok=True)
out_html.write_text(html, encoding="utf-8")
print(f"Wrote metadata HTML to: {out_html}")