{ "cells": [ { "cell_type": "markdown", "id": "80f9b3df-2cd8-4217-b761-653ccf4b31be", "metadata": {}, "source": [ "# General Examples\n", "\n", "A place to keep processing or other functionality that may lie outside of the standard pipeline." ] }, { "cell_type": "code", "execution_count": null, "id": "efb2d3b8-3f25-4fd5-94f8-63ce4ca27640", "metadata": { "execution": { "iopub.execute_input": "2025-04-12T20:34:00.788264Z", "iopub.status.busy": "2025-04-12T20:34:00.788264Z", "iopub.status.idle": "2025-04-12T20:34:07.015837Z", "shell.execute_reply": "2025-04-12T20:34:07.015837Z", "shell.execute_reply.started": "2025-04-12T20:34:00.788264Z" } }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "fastplotlib version from git (0.4.0) and __version__ (0.5.0) don't match.\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "89265db47b894bd4b00ff4526b54955f", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Image(value=b'\\x89PNG\\r\\n\\x1a\\n\\x00\\x00\\x00\\rIHDR\\x00\\x00\\x01,\\x00\\x00\\x007\\x08\\x06\\x00\\x00\\x00\\xb6\\x1bw\\x99\\x…" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Available devices:
ValidDeviceTypeBackendDriver
✅ (default) NVIDIA RTX A4000DiscreteGPUVulkan560.94
NVIDIA RTX A4000DiscreteGPUD3D12
NVIDIA RTX A4000DiscreteGPUD3D12
❗ limitedMicrosoft Basic Render DriverCPUD3D12
NVIDIA RTX A4000/PCIe/SSE2UnknownOpenGL4.6.0 NVIDIA 560.94
" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "%load_ext autoreload\n", "%autoreload 2\n", "\n", "from pathlib import Path\n", "import os\n", "import matplotlib.pyplot as plt\n", "import numpy as np\n", "import suite2p\n", "import mbo_utilities as mbo\n", "from copy import deepcopy\n", "import lbm_suite2p_python as lsp\n", "import fastplotlib as fpl\n", "import tifffile\n", "\n", "import matplotlib as mpl\n", "mpl.rcParams.update({\n", " 'axes.spines.left': True,\n", " 'axes.spines.bottom': True,\n", " 'axes.spines.top': False,\n", " 'axes.spines.right': False,\n", " 'legend.frameon': False,\n", " 'figure.subplot.wspace': .01,\n", " 'figure.subplot.hspace': .01,\n", " 'figure.figsize': (18, 13),\n", " 'ytick.major.left': True,\n", "})\n", "jet = mpl.cm.get_cmap('jet')\n", "jet.set_bad(color='k')" ] }, { "cell_type": "markdown", "id": "b606842c-ff69-442a-b78a-1c59f8718cb9", "metadata": {}, "source": [ "## Image assembly\n", "\n", "To preview data, run\n", "\n", "``` python\n", "scan = mbo.read_scan(files, join_contiguous=True)\n", "\n", "widget = mbo.run_gui(scan)\n", "widget.show()\n", "```" ] }, { "cell_type": "code", "execution_count": 2, "id": "bdcfacfa-c939-47ba-aa5e-e0a73f3c2eab", "metadata": { "execution": { "iopub.execute_input": "2025-04-12T20:34:07.015837Z", "iopub.status.busy": "2025-04-12T20:34:07.015837Z", "iopub.status.idle": "2025-04-12T20:34:07.626519Z", "shell.execute_reply": "2025-04-12T20:34:07.626519Z", "shell.execute_reply.started": "2025-04-12T20:34:07.015837Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Detected possible escaped characters in the path. Use a raw string (r'...') or double backslashes.\n" ] } ], "source": [ "scan = mbo.read_scan(r\"D:\\W2_DATA\\kbarber\\2025_03_01\\mk301\\green\\*\")" ] }, { "cell_type": "code", "execution_count": 5, "id": "e1520064-9040-4097-8543-d6b83b1de66b", "metadata": { "execution": { "iopub.execute_input": "2025-04-12T19:39:09.796323Z", "iopub.status.busy": "2025-04-12T19:39:09.796323Z", "iopub.status.idle": "2025-04-12T19:39:09.908022Z", "shell.execute_reply": "2025-04-12T19:39:09.908022Z", "shell.execute_reply.started": "2025-04-12T19:39:09.796323Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Saving raw tiffs to: D:\\W2_DATA\\kbarber\\2025-02-27\\mk301\\assembled\n", "Saving suite2p results to: D:\\W2_DATA\\kbarber\\2025-02-27\\mk301\\results\n" ] } ], "source": [ "animal_path = Path(r\"D:\\W2_DATA\\kbarber\\2025-02-27\\mk301\")\n", "assembled_path = animal_path.joinpath(\"assembled\")\n", "save_path = animal_path.joinpath(\"results\")\n", "print(f\"Saving raw tiffs to: {assembled_path}\")\n", "print(f\"Saving suite2p results to: {save_path}\")" ] }, { "cell_type": "code", "execution_count": 8, "id": "ef78ca67-bc60-4a9f-b637-d8d8c1d8d8a3", "metadata": { "execution": { "iopub.execute_input": "2025-04-12T19:41:21.840753Z", "iopub.status.busy": "2025-04-12T19:41:21.840753Z", "iopub.status.idle": "2025-04-12T19:41:22.385984Z", "shell.execute_reply": "2025-04-12T19:41:22.385984Z", "shell.execute_reply.started": "2025-04-12T19:41:21.840753Z" }, "scrolled": true }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "5a38095d65cf45bd802dcb8b6d705165", "version_major": 2, "version_minor": 0 }, "text/plain": [ "RFBOutputContext()" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "iw = fpl.ImageWidget(data=scan)" ] }, { "cell_type": "code", "execution_count": 12, "id": "b38d84ad-0f66-429a-b751-9890bffbee32", "metadata": { "execution": { "iopub.execute_input": "2025-04-12T20:39:35.018580Z", "iopub.status.busy": "2025-04-12T20:39:35.017580Z", "iopub.status.idle": "2025-04-12T20:39:35.132581Z", "shell.execute_reply": "2025-04-12T20:39:35.132581Z", "shell.execute_reply.started": "2025-04-12T20:39:35.018580Z" } }, "outputs": [ { "data": { "text/plain": [ "(5632, 14, 448, 448)" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "scan.shape" ] }, { "cell_type": "code", "execution_count": 3, "id": "4e61df63-6e33-48d0-bef4-cde2dc8feb78", "metadata": { "execution": { "iopub.execute_input": "2025-04-12T20:34:17.034786Z", "iopub.status.busy": "2025-04-12T20:34:17.033786Z", "iopub.status.idle": "2025-04-12T20:34:17.164926Z", "shell.execute_reply": "2025-04-12T20:34:17.164926Z", "shell.execute_reply.started": "2025-04-12T20:34:17.034786Z" } }, "outputs": [ { "data": { "text/plain": [ "(14, 448, 448)" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data = scan[50, :, :, :]\n", "# data = np.random.randn(50, 2, 448, 448)\n", "data.shape" ] }, { "cell_type": "code", "execution_count": 8, "id": "a05ce0f0-36da-4169-84b1-eee071d042be", "metadata": { "execution": { "iopub.execute_input": "2025-04-12T20:36:13.189852Z", "iopub.status.busy": "2025-04-12T20:36:13.188852Z", "iopub.status.idle": "2025-04-12T20:36:13.368889Z", "shell.execute_reply": "2025-04-12T20:36:13.368889Z", "shell.execute_reply.started": "2025-04-12T20:36:13.189852Z" }, "scrolled": true }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "18d4f43fbade4d129fb78f162ef09472", "version_major": 2, "version_minor": 0 }, "text/plain": [ "RFBOutputContext()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "ecb446de35af428a8097f937c042f97b", "version_major": 2, "version_minor": 0 }, "text/html": [ "
snapshot
" ], "text/plain": [ "JupyterRenderCanvas(css_height='300.0px', css_width='500.0px')" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "fig = fpl.Figure(cameras=\"3d\")\n", "volume = fig[0, 0].add_image_volume(data=data)\n", "fig.show()" ] }, { "cell_type": "code", "execution_count": 28, "id": "72b1eddc-b1e4-4300-a7a9-5c615089a019", "metadata": { "execution": { "iopub.execute_input": "2025-04-12T20:52:01.317992Z", "iopub.status.busy": "2025-04-12T20:52:01.317992Z", "iopub.status.idle": "2025-04-12T20:52:01.411998Z", "shell.execute_reply": "2025-04-12T20:52:01.411998Z", "shell.execute_reply.started": "2025-04-12T20:52:01.317992Z" } }, "outputs": [], "source": [ "fig.renderer.blend_mode = \"additive\"" ] }, { "cell_type": "code", "execution_count": 23, "id": "0d883704-d095-4305-bcac-bc7420414a6e", "metadata": { "execution": { "iopub.execute_input": "2025-04-12T20:48:40.319585Z", "iopub.status.busy": "2025-04-12T20:48:40.318585Z", "iopub.status.idle": "2025-04-12T20:48:40.411112Z", "shell.execute_reply": "2025-04-12T20:48:40.411112Z", "shell.execute_reply.started": "2025-04-12T20:48:40.319585Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "1be3d19cb2c748d7a361bb5db97df223", "version_major": 2, "version_minor": 0 }, "text/plain": [ "IntSlider(value=3833, max=5632)" ] }, "execution_count": 23, "metadata": {}, "output_type": "execute_result" } ], "source": [ "slider" ] }, { "cell_type": "code", "execution_count": 22, "id": "288cef97-66f1-4980-ae35-8d0bdfb344b6", "metadata": { "execution": { "iopub.execute_input": "2025-04-12T20:48:28.014642Z", "iopub.status.busy": "2025-04-12T20:48:28.014642Z", "iopub.status.idle": "2025-04-12T20:48:28.108784Z", "shell.execute_reply": "2025-04-12T20:48:28.108695Z", "shell.execute_reply.started": "2025-04-12T20:48:28.014642Z" } }, "outputs": [], "source": [ "volume.cmap = \"gnuplot2\"" ] }, { "cell_type": "code", "execution_count": 18, "id": "92ba24f9-1248-4b04-b20f-b85902abd5d9", "metadata": { "execution": { "iopub.execute_input": "2025-04-12T20:43:42.072103Z", "iopub.status.busy": "2025-04-12T20:43:42.071104Z", "iopub.status.idle": "2025-04-12T20:43:42.164140Z", "shell.execute_reply": "2025-04-12T20:43:42.164140Z", "shell.execute_reply.started": "2025-04-12T20:43:42.072103Z" } }, "outputs": [], "source": [ "volume.interpolation = \"linear\"" ] }, { "cell_type": "code", "execution_count": 17, "id": "e4cbbb0b-64f3-4f92-89a6-00f6ca14ecda", "metadata": { "execution": { "iopub.execute_input": "2025-04-12T20:43:13.775877Z", "iopub.status.busy": "2025-04-12T20:43:13.774877Z", "iopub.status.idle": "2025-04-12T20:43:13.869877Z", "shell.execute_reply": "2025-04-12T20:43:13.869877Z", "shell.execute_reply.started": "2025-04-12T20:43:13.775877Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "1be3d19cb2c748d7a361bb5db97df223", "version_major": 2, "version_minor": 0 }, "text/plain": [ "IntSlider(value=0, max=5632)" ] }, "execution_count": 17, "metadata": {}, "output_type": "execute_result" } ], "source": [ "slider" ] }, { "cell_type": "code", "execution_count": 16, "id": "86a66710-ceba-4027-bb30-1b0323e06014", "metadata": { "execution": { "iopub.execute_input": "2025-04-12T20:43:06.600214Z", "iopub.status.busy": "2025-04-12T20:43:06.600214Z", "iopub.status.idle": "2025-04-12T20:43:06.698788Z", "shell.execute_reply": "2025-04-12T20:43:06.698788Z", "shell.execute_reply.started": "2025-04-12T20:43:06.600214Z" } }, "outputs": [], "source": [ "slider = IntSlider(0, 0, scan.shape[0])\n", "\n", "def update_index(change):\n", " i = change[\"new\"]\n", " volume.data = scan[i, :, :, :]\n", "\n", "slider.observe(update_index, \"value\")" ] }, { "cell_type": "code", "execution_count": 10, "id": "815fd0b2-5c53-4248-9b0e-5b6cdab22b85", "metadata": { "execution": { "iopub.execute_input": "2025-04-12T20:37:39.099223Z", "iopub.status.busy": "2025-04-12T20:37:39.098223Z", "iopub.status.idle": "2025-04-12T20:37:39.190224Z", "shell.execute_reply": "2025-04-12T20:37:39.190224Z", "shell.execute_reply.started": "2025-04-12T20:37:39.099223Z" } }, "outputs": [], "source": [ "volume.world_object.world.scale_z = 15.0" ] }, { "cell_type": "code", "execution_count": 19, "id": "02f3d3f3-0c29-4c83-838a-1a28739cad9d", "metadata": { "execution": { "iopub.execute_input": "2025-04-12T20:46:42.326229Z", "iopub.status.busy": "2025-04-12T20:46:42.326229Z", "iopub.status.idle": "2025-04-12T20:46:42.439227Z", "shell.execute_reply": "2025-04-12T20:46:42.439227Z", "shell.execute_reply.started": "2025-04-12T20:46:42.326229Z" } }, "outputs": [], "source": [ "hlut = fpl.HistogramLUTTool(volume.data.value, volume)\n", "fig[0, 0].docks[\"right\"].add_graphic(hlut)\n", "fig[0, 0].docks[\"right\"].size = 80" ] }, { "cell_type": "code", "execution_count": 21, "id": "0022456e-c91e-4a75-9b48-7ff4c5d7efae", "metadata": { "execution": { "iopub.execute_input": "2025-04-12T20:47:48.152201Z", "iopub.status.busy": "2025-04-12T20:47:48.152201Z", "iopub.status.idle": "2025-04-12T20:47:48.248202Z", "shell.execute_reply": "2025-04-12T20:47:48.248202Z", "shell.execute_reply.started": "2025-04-12T20:47:48.152201Z" } }, "outputs": [], "source": [ "fig[0, 0].docks[\"right\"].controller.enabled = False\n", "fig[0, 0].docks[\"right\"].camera.maintain_aspect = False\n", "fig[0, 0].docks[\"right\"].auto_scale(maintain_aspect=False)" ] }, { "cell_type": "code", "execution_count": 11, "id": "c44913fd-15e3-471a-81f5-31da77546f20", "metadata": { "execution": { "iopub.execute_input": "2025-04-12T20:37:49.567663Z", "iopub.status.busy": "2025-04-12T20:37:49.566662Z", "iopub.status.idle": "2025-04-12T20:37:49.657661Z", "shell.execute_reply": "2025-04-12T20:37:49.657661Z", "shell.execute_reply.started": "2025-04-12T20:37:49.567663Z" } }, "outputs": [], "source": [ "from ipywidgets import IntSlider" ] }, { "cell_type": "code", "execution_count": 10, "id": "612612c4-9bcd-49b4-a1b2-a7c8eca7ff9f", "metadata": { "execution": { "iopub.execute_input": "2025-02-27T23:28:24.110909Z", "iopub.status.busy": "2025-02-27T23:28:24.105392Z", "iopub.status.idle": "2025-02-27T23:28:24.225135Z", "shell.execute_reply": "2025-02-27T23:28:24.225135Z", "shell.execute_reply.started": "2025-02-27T23:28:24.110909Z" } }, "outputs": [ { "data": { "text/plain": [ "[WindowsPath('D:/W2_DATA/kbarber/2025-02-27/mk301/assembled/plane_01.tiff'),\n", " WindowsPath('D:/W2_DATA/kbarber/2025-02-27/mk301/assembled/plane_02.tiff'),\n", " WindowsPath('D:/W2_DATA/kbarber/2025-02-27/mk301/assembled/plane_03.tiff')]" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "input_files = mbo.get_files(assembled_path, str_contains='tif', max_depth=3)\n", "input_files = [Path(x) for x in input_files]\n", "input_files[:3]" ] }, { "cell_type": "code", "execution_count": 17, "id": "b81ef74b-b0d1-4b90-808e-dcb453eafc70", "metadata": { "execution": { "iopub.execute_input": "2025-02-27T23:35:58.751442Z", "iopub.status.busy": "2025-02-27T23:35:58.751442Z", "iopub.status.idle": "2025-02-27T23:35:58.860837Z", "shell.execute_reply": "2025-02-27T23:35:58.860837Z", "shell.execute_reply.started": "2025-02-27T23:35:58.751442Z" } }, "outputs": [ { "data": { "text/plain": [ "['D:\\\\W2_DATA\\\\kbarber\\\\2025-02-27\\\\mk301\\\\assembled\\\\suite2p\\\\plane0\\\\ops.npy',\n", " 'D:\\\\W2_DATA\\\\kbarber\\\\2025-02-27\\\\mk301\\\\results\\\\plane_01\\\\plane0\\\\ops.npy',\n", " 'D:\\\\W2_DATA\\\\kbarber\\\\2025-02-27\\\\mk301\\\\results\\\\plane_02\\\\plane0\\\\ops.npy']" ] }, "execution_count": 17, "metadata": {}, "output_type": "execute_result" } ], "source": [ "ops_files = mbo.get_files(save_path.parent, 'ops', 4)\n", "ops_files[:3]" ] }, { "cell_type": "code", "execution_count": 39, "id": "d2de2586-6e6f-425e-9448-faf7c2e6fbfd", "metadata": { "execution": { "iopub.execute_input": "2025-02-27T23:56:37.155344Z", "iopub.status.busy": "2025-02-27T23:56:37.155344Z", "iopub.status.idle": "2025-02-27T23:56:39.454434Z", "shell.execute_reply": "2025-02-27T23:56:39.454434Z", "shell.execute_reply.started": "2025-02-27T23:56:37.155344Z" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7YAAAEMCAYAAADwNCqiAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzsvQeYnVd1772mV0mj3ottufcCGDC9QzCBEEgIAdKTLze5uSH5Um7Jl+QmN72RCwkJqQRCL6YYUwwG995tuduSrF6n1+/5vTO/w9LxjDSSZqQZ6d3znOfMed9d1t57/dfae+21966JiJEoQxnKUIYylKEMZShDGcpQhjKUYZaG2uNNQBnKUIYylKEMZShDGcpQhjKUoQxHE8qJbRnKUIYylKEMZShDGcpQhjKUYVaHcmJbhjKUoQxlKEMZylCGMpShDGWY1aGc2JahDGUoQxnKUIYylKEMZShDGWZ1KCe2ZShDGcpQhjKUoQxlKEMZylCGWR3KiW0ZylCGMpShDGUoQxnKUIYylGFWh3JiW4YylKEMZShDGcpQhjKUoQxlmNWhnNiWoQxlKEMZylCGMpShDGUoQxlmdSgntmUoQxnKUIYylKEMZShDGcpQhlkdyoltGZ4T/vmf/zlGRkaKz8te9rLjSsu1115boWXt2rXHlZYyzLwwHn/w7TPel2H2BfvviSeeON6klOEE5KX3vve9lee/8zu/EydLWLlyZfT09BT1fte73hUzMTz00EMFfX/7t397vEkpQ1UosTR7sNTa2hq7du0q6Pu1X/u1OJnCSTGxBWwCj8/Xvva158S55JJLDojDp6mp6bjQmwVF/uzfvz9uv/32eP/73x/19fVxIoQLL7yw6B8+x3sSXYaZEz70oQ8dwPu/8Ru/cUwMOX76+/tj06ZN8ZnPfCZe8IIXTJj2iiuuiI9//OPx9NNPR29vb+zevTtuvvnm+O3f/u2YM2fOQcuaykEAA43xZIafv/zLv5yyssowu/TdG97whgl58Od+7udiJg3EfuVXfiW+853vxI4dO4pB4+OPPx5XXXVV/NiP/Vg0NDQcN9rGwxf0PfLII/HBD34wVqxYMW662traePe7312MObZt2xZ9fX3FN79//Md/vHh/sLKmWif+j//xP6K5ubmQbZ/85Ccrz1/ykpcUv6nP3r17C/n37LPPxpe+9KV43ete95x8rrzyyvj3f//3eOyxxw5ok8kYn8kzpznzzDMPeP/Xf/3XxfdP//RPx6pVq6ak3idbKLE0e7Dk/OPzn/98pa/uv//++M3f/M1x+4nxCOMSyiXvrq6uuOeee+L3fu/3or29vRKvu7s7/uEf/qH4/9d//dejra0tTqYwcqJ/fud3fmckh8HBwZE1a9YcEOdDH/rQSHVoamo6LvS+973vHTlUuOaaa0Zqamqmpfz169ePvPjFLy4+c+fOPWZ1pZ+q35933nkVWhobG487L5Wf6f/U19ePbN++/QB+v/POO8eNe+2111birF27tnjGt4H3hyrvn//5nw+Ktd7e3pHLLrvsOen+5E/+5KDpnnzyyZGzzz57wrLG4/cj/TzxxBMHpeUv//Ivj3u/Hs7HQL2ONy2zXd9973vfm5AHf+7nfu6408sHnDz66KMH5eELL7xwynjpUHrncPEF1tvb2w9IM2fOnJFvfOMbB03He+JNVNbLXvayKWvjBQsWFLKM8Id/+IcHvPvv//2/H5TOH/3RHz0g/uc+97lx4ymDJ/q8613vek6aM88884A4tGNPT0/x7k//9E+PO2/Otk+JpdmFpde85jWVvKrD1VdfPVJbW1uJ+/KXv3ykv79/wrxvuOGGA/I+/fTTK+9+8Rd/8bjz5rH6nBQrttWhrq4ufuqnfuoA69ZMdCUg3HnnncWq0Cte8Yr4gz/4g8rz17zmNfG2t73tkOlbWloOu8xHH300rr/++uKzb9++OJ7hvvvuq9CCdaoMJ36AtxctWnTAs4suuug5lv3pCP/0T/9U4O1HfuRH4sknnyye4blRvbL1//w//09hBSUMDg7Gn/3Zn8WrX/3qQo5gPSWweoGF/FhbSn/pl36pqEP+uApShpMvvPjFLy70x0wN8+fPj69+9atx2mmnFb9ZiWC16VWvelX84A/+YOFtsGfPnpgpAXyx+sO3Ogmsv+Utbzkg3kc+8pGiDoSdO3fGf/2v/7X4/cu//MvFbwK/XVWZ7oBs0guNFZ8caPO/+qu/KuTeK1/5ymJl7IEHHqi8p6454KHy0Y9+tJCDeKlMJixcuLAoY3h4uFhtmyh0dnbGN77xjeJ/VhcZr5VhcqHE0uzCEiu+eNCY1+///u8X4/p77723+M0K78///M8fkNZV3G9+85vF+1/4hV+otN0LX/jCYvXXwKoxY2jC+973vjiZwsjJZMHeu3dv8f30009XVjx/4id+4oB3463Y/tmf/dnI9ddfP7J58+bCurJ///6R22+/feT973//SF1dXSXeRz7ykXEtJL/+679eef53f/d3B6U3W8CqV5y+9a1vVd791V/91XPiU1es8A899FBh2eGdaX/oh36oSL979+6iDo899tjIBz7wgZFly5ZNaNGvtnJdccUVI1/4whdGtm3bNtLX1zfy+OOPj/z5n//5SEdHx3PqMX/+/MKadf/99490dXUV7Uub2S4Hs9xp+RtvRe5o6oN17Hd/93dHnnnmmcIqzGrGBRdccNx5tPx8//Ov//qvlf762Mc+9hyemM4V21zGf/tv/+0Ay6nPkQtbt26tvPtf/+t/HZAfWNi5c2flPfkcqiwswHiNYK0GV/v27Rt5+OGHi/q/9KUvPWQdDtcy/TM/8zMjN954Y1EOOHjwwQdH/uAP/uA5Hho534naLJdnIB2eH8gKZCXtQf2qvWAWLlxY9PeePXsKHPM/z3I+x5sfZ/uKLeGb3/zmpFZsTzvttJF/+qd/KvQjfLhjx46RL3/5yyOvfOUrD4hHnxvI77Wvfe3ILbfcUvDSU089NfJLv/RLk6YXvjPAAytWrHhOnMWLFxf6JHt1gKvbbrttpLOzs/jcdNNNIz/2Yz/2nLRTvcqU+R3+Nvzmb/5m5fkll1xyQPtXY5jfOVx88cWHLAs99fnPf76QPeh2+gZPFnC1evXqQ9YBHiCQbjL98pa3vKVCx7333jthvGeffXZSK7b//u//Xhn/5DpWr9jy+eVf/uXKe8YcxxtTs+VTYml2YemHf/iHK8+/+tWvVp6/4AUvqDy/5557Ks/zqvUb3/jGynNkr+H5z3/+AWX/xV/8ReXdqlWrjjuPHqPPcSfgmCp6lDYKm/CGN7yheM8AT4GbQx6E6RozXmAyazwGhkyaCAzWli9fPnLqqacWEzsCE8FqN4vDmdhmF6APfvCDz4lf7YLixPaP/uiPJqSfyfq6desOOWj9qZ/6qcKNe7zAwDhPbgEQg/TxgnU6montkdZnPBcd+iQbJ8rP8fuAOQ1MKJ0lS5ZUXG/gsWM5sf3VX/3VA+SGzxnkGzCo5EGCH1zoDN/5zncOWdbB3Kx+//d/f0onttlYUB0eeOCBA3B8pBNbZF+1O3l1XRoaGgpDV3W46667Kv+XE9uj03d5wHP55ZcfdGL7vOc97znGXcPQ0NDIz//8z487saWPxtMLr3rVqyZFb5bJ1Uai8T4MxL/+9a+PTBTQDTn+dA7Gv/jFL1aev+c976k8/73f+70D+mC8PG+99dZKHIytBysLw1c2ph1uW6PfMDARaLuDxcX1Ef352c9+tpL/3/zN3xzVxPZ1r3td8X7jxo3FGOlQE1sms4bf+I3fOO6Ymi2fEkuzC0t//dd/XXn+P//n/zygDOcpBHXy//gf/6PyjDEDCzXIZePed999RZ9mGt797ndX0rzzne887jx6LD4nnSvy1q1bi03cHk5w3nnnxeWXX178/sd//McJ0+EGjGsBS/+4Trz1rW+Nm266qbLEzwlpBFx3yZcwb968+Ju/+Zv4u7/7u8LdGRecn/zJnyxcbQ434I7z2te+Nl7/+tdXnumukAMuKFdffXXhyvHDP/zDxSb05z//+ZXDd9iYzuFTb37zm+Nb3/pW8Wz58uXFpv2DBTb0c0ohdFDH//Jf/ktBD66bhLPOOiv+8A//sBKf/DxI4qmnnoqf+ZmfKdoO981nnnmmeP72t7/9APdq3UD5mO944Wjqs3r16vh//9//t+g/3KkIp5xyyoSb+stwbMMP/MAPxNy5c4v/OUyBwyG+/e1vV3gMl+TpDGvWrClcN9/xjncUbk66GmfZcM4551T+h4fGc8W76667xo0/XuDAB11F77jjjoKXwTnuz5/+9KeLwyEOJ9Be1YdzeHAG9frRH/3R4n9OTASXuKjdfffdxbOzzz77ABwfaUD2bd++vXCr4pANQ3bp/omf+ImK2xSHZvAbmZAPwCjD0QXc1W688cbi///5P//nQePiEif2PvWpT8Ub3/jG4kCSoaGh4mAW3OvGO8xn3bp1hcs92OUgNcNkDqbCTV+3ScJ3v/vdQ6bBDRG3fwJ1g39/6Id+qDhNl4BuQEdMVzj//POLA2LQgeoNxhWf+9znxsV8lgVHKiNwMVyyZEnx/8c+9rGi/uh4dB94p48OJdfEFVuNJgocckNeHLqDjhwYGIh/+7d/i9/6rd+KIw30MWMgAq7Lk9nelGk8VNuUYTSUWHpu/JmOJWSngXobSId+ro73J3/yJ8VYhDEJrtfXXHNNcdBmY2Nj/Ou//msxjhgcHIyTHUsnxtG6hxlgDAZcKGKYjcDA7rbbbpswDZMmJmWcSMb+v3xaGUqfARq+9QROaaMMJrgM1AxMDB2kTza8/OUvLwam1YHJIqcSVgf2BVKvDE4GJIb/+3//b/zFX/xFRZBt3Lix8PNHqLA/Y6L9MkySiUdgsK0gYTD0zne+sxCqDJh/8Rd/MTo6OopBEQGQMUhXUAJEAyc8Y1jIkwT20h4q5P3Qh1sfJrx/+qd/Wvx/xhlnxB//8R8X/69fv/6Q5ZZh+gPGIwN85jf7bn0/kXKbioDhiY+BUz/Z13LDDTdUnjn4JzB5Gy/k50zyDhbAiBhngociYm8MGP7whz8cUxkydv7X//pflQk7ZboXBzwzAD3agDxArjJIYa8ck+bFixcX7cfgNu+jgpZ/+Zd/Kf5nD5h77Mpw9AHjIcZcZHLef5UDBqNzzz23MiCDT+BL9usxGEKPsQ+MQW/1fm0GZPAM+7xuvfXWiuEky1SMRdWBuNXY2Lx58yHrw541A7IfzBD+4z/+o9ijZpxbbrklpiN84AMfOOA3V4qxz41bC6ZLRjhOIWAYfvjhhwtdR1D/HSzkMwsmuyeWgAziU1NTE0fDfwzMOSn2i1/84qTSZBqrz1sow/ihxNLsw1I+f6P6DJn823g8g150ZDUuWGhirPSlsYW7kxlLJ92KLYEVTSZRWDlQyISDbTp/3vOeVwAOaxargeMdwc1kLodf/dVfrYCFwFHrHN99tAFgYB1nBWa8lV/qVm1xYgJn4CoSA5vuocvJ+cEmdzkPBv7f+973ig9WQUFHG7CySz4e+ED+TmqnKhxNfTj+PsefqP/KcOwDVtA3velNlb5xBf6zn/1sxQopXo9VwDp76qmnHvAsrzgwURsv5Occ+X+wwDVBrnShnB588MHiqH5Wb3/3d3/3AMV+pIdHcQjdwbCDZ4crwwsWLJiwXpMN1NlV4ImwltuVSY5hugZRJ2v48pe/XPASIa+e55D5grjZ6p/7I8cz4LnkIGwimaq+yB90aTU2JrrqYyJaWVk2PwfiBIwoxypccMEFBWamU0agZzds2FBZRWNAThrGJRjQD2fiebC4XOPDqg+Ha2LowkiMJwUG7CMJHPjHahyrT9UHUB0pjWUYP5RYmn1Yyt5Y1deLMj+pjsdVbizMMEHFwMiVglyZuWXLlkKeMrFdW3Xl1smIpZNyYsvqSGYu3Fk54W+iwKlkMhmTSu4FZLDI0r+h+g6tpUuXHgBQXB94dqSnImPxvvjii4vBAoBhxXa8kN0ZJhPGWw0+mnC878o6VH2y9SoP3k5G8M+0gOHIU7w5QdOVTKyx3tuM5R9XoukK/9//9/8VWOdePAxEGLHweEB5GPIJh0x8xzOKTBR/ooDC+9mf/dn4whe+UKyeYhgC76xkfuITnzisOrBFwZPEj/Z084ynLOMOZfmttmQfDtamWiaVYXTVjMAqefaSmWqZmo2qk5GpDNjwijjYyu5M00N4UWFsYpuRsgqM6tFUjfmJtk8cjoxgjELb4E6Oezmr6tAALRjl2V5zsOBKHAFPpokCBia8ytgKxJYIAx5u1QPvyYRly5YVsoyxEGMTt0ZkF0wM3xrexqMx016GiUOJpefGn+lY8uYFQp4fgBnawmA8tg5lmc7iFrcwYPwnkO8bx7wlT2YsnZQTWwLMphLmuO6DWXncP0vAP55VUQaLE01UUehMnNlX64CO1SiOLD/cAF2UhSskLpiH2p873iBE6xQh75dA2bgng/2/B9svkPNg8E8dqz/Ul3jkY9uyKnOwa1oo1zDeBduHouVI61OGmRd0YTwcd+XpCLgqYehiPwyBSTU8bwCPuj6hSFiRyAFXqOzOzF7hQwXkBEqVyf3pp59eKCPd8lnFBVtTESbCDm6oDmBYXbF+WS4ySFWWTcWgSe8KwmWXXVb5n+0eZZjawMCHVXlkbG7r8fgCg0q+YiX3R453OGE8faFxNhtu8HRi5WG8FRkHaJkGzkcYL2+vBpmugKsktEoLZzfkPcUZ83h8YZzOgd88Hy/+RIFB6f/+3/+72BPIahx112XzUFf/4aHm2GE8T6Y8kZjIqHW4niNHEzKNkzEMlmE0lFiaXVhiddzwohe96IB66hmKodormrJBOZ9FwcrteM9PViydlHtsZU72gzJYcy/fRCGvjjKxZaWWVdt8kFMO/+2//bcK+FjtYUUHFwfutGLv2qEOaprqgJsjhwQQGISz94I9fNxvJgjZF3yw/QK00R/90R8V8XGpBqjsaWXAjVDA5YLVNgbh5MPeLPb6Mingf4QILh8MoNnn9Z73vKfIN5dJe1533XWFayZgnmiVaSrqU4aZFTBKuI+Wfv/t3/7tA96ziur+F/Z709fTvbLH/uv3vve9hSLCSwIDDftbuIORQ3XcH4R7EIqF/eMMGsCH1lYOjpjMPlks7RjYcN+Fn/HwAFcEymcCjXvy0QYOy3BvK3WgLih56jDe4AjjkFZyJvrQyGr2wSzVkw3st9O6DC1Y0hkw/J//83+OOu8yPDdwKBh758YLGE0Z9LCfloEe8djzzKSWg08I8Er1nY1TEbgDmj3YuNDBV7jI8wwdAK5YScGjgW9kOrTJk+wn40AVtv0wiOeAOfj7z//8zw/wqJqOgPGWcv7+7/++ovc5R4PnuHPTVuxJJrDPnG0FGBfQgRlvuIBWr1hWBwa9rGqRJ7oOzOK2qcHrUKup0IRLOWMQDBfVgfNBMOYRhxUsJhccppPHS3kf46WXXlpZdc1lMy4iHquHLAAgP5DV1QFPFD3a4EvaJYdM42TO3SjDaCixNLuwhAco8Vk841wYxsmcPYM+NHjwGoE6e04C4wrajMUjxkSGu6rOIDlZsTRyMl1/8H/+z/85aNzxrvvhGgSuO8iB39xrW32tzhlnnDHS3d1dPONe1ZaWlpF58+aNbNq0qXjGMeH5KprDve7nUPEnOm59uq/7qaaVu8C4C/FQ8bizcryrlCx3qq/7yfU53GPqy8/0fX72Z3+20hef+tSnxo1zxx13VOJ4r+Z0XvfD56qrrqq8+/CHPzzh/XDjBe7zPPfccydV1sDAwIT55PvtpuK6n49//OOTvu6H6wSqA9cvbdiwYdzyJrqmZ7x+4rof7g6sDtzfO1E+5efI9R1XT+R+m6rrfuDpXP6R9N3ZZ5897lVsOVx44YUVvjnYFSWEfH/7dF5R0tzcXNzpbnjXu95Vece1Npnvxwu8P9jd0Zb14he/+KD5TOZKHO6PN3A36Hh9Nl7gKpE3v/nNE8qx8cKh+v5Q1/0od9Hl8O3xxtRs+pRYml1YQsdybeB44eqrrz6A/9/0pjcddKww3vVD995770GvSjoRPyetK/LhBHzlsVrjy86qAhvBsZDkE34JuG1g5XafIHtziY87Hye96SZwpAcxHE1gFQma8fmHHg77YDUJqxgWoOzrn0NeFcOV+qUvfWlh6WKzOi6bfGMVxMKUT1JldRZLEateHIZDO+DqgTUtr5Bz2Ajul1jlDmdF6kjrU4aZ74Y80cmZWDePlTuyAYuogZXKvP0A9ykOceO0T6zc8CCrzZyuziE9WIGrVyImCqxQs8IBbvBY4MPeMyzo2Ro7FYETb3H1AreskFIWK9GslHL1mW5PhK9//euFd4R0kQbL8lRYfpEfrNJj3QbDfFgtZjWhDFMf2J5xsNVw9Bwrcegw+Jn+wS0djxs8cfLKwVQHdAR4YaWGw13QC6wQs7oBLvDw0Y0OuvDu4TAi+BHMoV9wbWfViW0A+bqQ6QxgIntgcXOCAbpw48Trg1O+WRmCdr75zTWBuEJOZv87bpp4TOElpe5Fn7IqhN71dP9DeWtA73julmy1QJfiLYIcQxdTJqem47qeZe90B8ZIXkGDbMjblcpw6FBiaXZhCR3LKjLjHuQt+dI/eIeyNzfzPwcBMuagT1gNhna8I1ilZQyBl2QObGvyTAVvHThZwnGfXZefmfVhxcxwzjnnHHd6yk/5KT/lp/yUn/JzdJ8PfvCDhV5/5plnRurr6487PeN9fuEXfqGgEU+uVatWHXd6yk/5ma1Y+uM//uOCxq1bt460trYed3qO4ee4E1B+ZsgHtxQmslu2bCnAgHvESQaG8lN+yk/5KT/l54T8rFy5srL1J7t6zqTPQw89VND3gQ984LjTUn7Kz2zFUmtr68iuXbsK+t7//vcfd3qO5adm7J8ylCH+8i//8oCDHj70oQ8d4F5chjKUoQxlKEMZylCGMpShDDMxnLSnIpdh4oCfP9dD/Nqv/drxJqUMZShDGcpQhjKUoQxlKEMZDhnKFdsylKEMZShDGcpQhjKUoQxlKMOsDuWpyGUoQxnKUIYylKEMZShDGcpQhlkdyoltGcpQhjKUoQxlKEMZylCGMpTh5NljO3fu3OfcccrdrXwIfPPMu0/r6+sr/9fW1hafwcHB4rd3M5netDkuccy7rq7uOenIn/xIR/wciG964/Exv0w78Yhj3qTNtBjfb/8nHnkSZ2hoqJJ3DuTJe8vzm7Sk4TvX1bqYX0NDQ/HNb+vBt23Jc+kkLvda+azSyfX1lXoSz7a0LnysB++4e8v4BGmRTvvHduBZ7gPrZTBdboPcX7k9c7zcDr6znzId/O978/N5c3NzNDY2Vu4c4x1tlOm3DMsdj5ctO/Mp3zwjyFuWnXkt87R52f+Waf8aV5zkNso8y//2M/eZGUqMlhgtMVpiNMctMVpitMTo99uoxGiJ0RKjI7Meo1M2sZXZDBBc3Sg2lBXguRWzk8YDeG6YXDHTV1e2WhjktATL9plpcpAu6mWHy+Tj0ec7abEMGz13YHWwDjm9DFfNUDKy5dPmmZkBo3lmphWw1W3ob4WENLe2thZ5ZebPIJeGLDB5lv83Hs/IK4M8Xyw9nkDObVBdbhYsWShBq30pjykQFQ4GQN7S0lJpxywgeGfb8k0e0J+VSeZ78s08Z10UjNYl05D7Uv63XayzCjHzuH1FmlyfaiEoPTmUGC0xWmK0xGg1f5UYLTFaYvT77VVitMRoidHhWY3RKZvYZitBflYNKhsqWyUy4xmqAV4tBPL/uSHHEwzVwKkuz87OecuwmZlzuTa0+cAQBBs6v6u2mJk+W5By3gqGnFYaq9vWumUhlOsuA2TBk9tYhsuWGP7v7u6utCsgIn1fX1+lTbJw9rlgNo50WufqNrW9pM12y4qjuk65XJk+110rD3EBLYDjW+BbpnXgXbUCor65jfidwUg+2YqXhbs0mRZLme03nhCz7QW16bIlM4M/9z+05/Ywf2nIwrXEaInREqMlRkuMlhgtMVpitMRoidGRExijU7bHttpCk8FlBSTShs7WLhnLzq62GJifn9zJmVkyMMzXb5m5qFyy6PBca4fBRtZakJm0ul45nnXM7SADymQycm6janD4PguT/DszT6Ylu1f4LUNU05SfQxvAoGyf80zLkPXM5dlO5qmbi21BHvZvZmzBr6CxX/J786sW0Fm4ZQVjPNvOvCjfOkCT7/nu6emJvXv3HiDwrLfpbBvbXfDbhtVKRx7h2z7Ln2p+phziNzU1VfLI7kOGbJHMAoO4pM2KyvgIgxKjJUZLjJYYLTFaYrTEaInREqMlRmtPAoxO6T22uUH8ZAuDxGRrhhVQWOQZfn6f42em9l010IxXzZw5n2zdyZaEbH0zr/y/nZ/zkbGMU91ZmSFzx9leMlx1mdmSYdBdQHpNL23j7cUYrx0zHTm99Bs395f5WWcFYTW4YLQMVtMo+LJAsw1ynfOz6jqM55KTacv1qbaoSae/Fd7VZdC+1dYm+cx8/FS7ntiGEwlH4yoYsxtG5l3zykLFeuU9FqbN7StfVIcSoyVGS4yWGC0xWmK0xGiJ0RKjJUb7T1CMTtmpyFYsN55EZEGQGyo3SK6g+VTH1UJgo1eXn10EqhnUsmRS6cvMbVp/54a3YQEb73IHZ0GU88jCzrobp7qdqgWcQo3fAqfavz7HzW2bBUgGdrYS2dbWK3+yQM1Mk+mrBpN14BuXjfH6J9cp80y2SlWXYxm5XtbF9pU3Mq9UhwymrAwU8NX9lsuVN6wrbSjI5cfcntXKzjoaRz7ygyVK+tkPkdvSvKp53KDgJJ/qPR/VocRoidHZgFHqzCEtq1atqgx4SoyWGC0xOnMwWurREqPVfV1idGZhdGh4KNrXzIkVL1gZQyMnlx6dkhXbzOy5IzMDZwbNz3JlJDL76GcGdFafQZpBZmPrY54bmv+1GORPfucG8iwk/Lb8vHye61DNMD7PHSATZd/1LCBkhMwotmd2DZmIoY2f3WW01mRBYJzq/sr9lPMcr7+kN5ercM/tZjzLy+3Nt24Qxss8kunTSpYZP/dJNf2m5X95Kbdd5p0c3/pAlwDyWXWfZcHJ/9YpK6rxrLa5/9ib4EEIuV9MkwWk9UeYGj/nbflYEauFQonREqOzBaMrV66M9evXF/ufnn766QMGjSVGS4yWGD3+GC31aInREqMzG6PLL1oep770tOje3R0bb3om6hpODj06ZSu2Elc9868GFiEvLVcDPXdwNUNnQZrjW8lsdckNldO6JJ4FRu6gDDAb103XhsyImQkEVLaIjVc/QvWGcfOwM3MHZmBI03iCSGGQ/fhtx1wvrXjW37jVzGFa/7cdq5k5W02q656tjeMJ/czYBGngO1t25Bc+bnCvbnfyyyfDZQWQ65DrYV/YJlnB+M5yMg9TTlZIGdjG438tjtUWPXjK/Qa86+joKE7nUznIC/Jqtqxl94t82h3P2tvbi3zEWYnREqOzEaNbt26NefPmxbJlyyoKt8RoidESozMHo7ke9kWJ0RKjJUZnDka3Pbgt5i6bG0vPXBr1bSePHp3yPbbVQKz+thGqO8LfuRMzUKuBnxnGdFTOxqk+DjunseGqLVLVjGoH2/D+bzzLtg52dH5neXacwPZ5tqrlehhH64+B97oF5PbIgkpLXH43XttJj3WotkC5ITsznQDOAiQLHuueBZzP7R/f53j5mb8ViKbPgjG3u2ndwC7NCpMsYKpBZ93sI/OzHXKfyQ8qq0wraR2AZ77jO7txZGHGB7AC0Pnz5xdl0Xf55L0sNBRmBA+BkFYsYQsXLiz+37dv37h1LTFaYnS2YJRnN998c6xbt+4A2kuMlhgtMTozMJpDqUdLjJYYnXkYHe4fjtv+/dZY8/w1MdJ3cunRKZvYZmtFNfBtmNyh1Z2cO7OaGaoJl+FkoCwg/BYAGVB2UmZgmUr6ZBDT5WX3apr96G6RQS5QqxteQPg8AzXXzbxkLv/P4Ce4/J/L83js7PqQ2z8LF+uqsJIptRaZ1naQxvFcI8wnB8uUgQWWzylH5pee3GZYZaRlPIVqPXyX+1lFIU0Z0JkOhb/vqg8DMK30yg+Zv7JQz31jGT5XEJBu6dKlcfnll8eFF15YrFJ97nOfi8cff7zSbtnSaBsplM0PoC9atCjOPffc4h1l3nbbbbFnz54D6M84KjFaYnSmY3T79u2xZcuWiqW3xGiJ0RKjMwujpR4tMVpidGZjdOdDO2PbA9uiqbEphmtOHj06JRNbG8bGlHGrrRlWVubIFqosEDKTZUEgKGQMG16wVVtJxrOUSUNmkMyQljmRgKq2UmUAyvC5TaTHdNkqY6dVW38yrdkCU23Rk16Zws7OLgzk7/1W2RoFnV7GbBmZiTL9uW2yMLa/fZ7dTsardxYWOR3Ps3DJFjGsOpaVrY65Dpn37APSCUTrbL7jWS+zZS/XWR7J7QS/yWvWTRp0F8ltSDotUQoEBuzsI3zHO94Rp556ajGQv/baaw9QANY59wP5ONjnN5YwXDYRijznaHesYl1dXSVGS4zOWoz6vMRoidESozMTo6UeLTFaYnRmY7R4PnBy6dEpd0XODWRD5pm4zwiZaQ12SmaWarBZVgZGFjK53Or3um1o3fFdtYDI/8ugdqDMkd0yZJLMMJmezDwZ3NnywTPBIvPJIOaXrV3mnd1CcrsrhMZrf/POYJSOXHf7I7e7Lgi2aa57BuJ4/a3FTaGU00mvVjvjw8wK5lz3LDAzWEmf77zymdayLBBsd59ZpvFz22eBgSDRmpSFiW2HcFV4WabWLOs/Z86cWLNmTVG/nTt3FtYrXCsUVJaZBSBCRheOLMigmUN2+ObAHd6Pd7dXidESoyVGjx9GN2zYUDwrMVpitMToDMXoAw9EfXNzidESoyVGh2fvWHfKJraGPOvPTF3NOHZabtDqGXvu3GxtsENkUjvMBqoWFJmxcznVtGgZyNaSbM0x72prhx1pXXMHVTO9DFgtmMaz+lQLsWrhYRrpznW0PEK1S0emy98C0Xu5qi2C1lPXBGnMfTTenV65PbMAqu6nLPiy4rCvMw9VA0i3EC1IWWhLgxdDCxjKqW5j32chYJm6Wtie0m7dqnnPdPn0QetDegD+xBNPxCOPPBLbtm2Lb3/727Fjx46KoCIfy7Setk12SwLcmzdvrpSlNVeBUWK0xGiJ0cPHKB9wBT6PBqPSizLOfVJitMRoidGZoUdHWOnbvj2ehn54aKwvS4yWGC0xOnTUepQV2uM11j3q634yI0qQjZBn3DKmHZIHAFo27MjcaVlQ5A7V7SCfypWZpVrQZODJCNW0+N7nps8AywwtHblTMwNZdrXlzv8zjdUAymXa4dVtkju/uhyfSV+OW113LTS8c8N2FkxahPLz3LZ5M3+uS25TgZOFp/9bru4LWqbwred3b2/vAVa43LYGwcw3d2HipqCQIh3gII0b3RUU0pXbz3p6n5sWKOsh0BVeppM2eZOAIMx9wv/33ntv8f/+/fsrViie63IE7eZZLZRsG8rfvXt3hQ7zqObPEqMlRkuMTg6jfBYvXlxcO4RC/td//dcizrPPPntYGOXz+te/Pi699NL4kz/5k8pAp8RoidESo0eP0ZW1wzE82Bc9t98QH+vcH0NRc9h6lO/XdvXG5TW18b/37ImRsVWwEqMlRkuM1h0VRg0/8dPvi69+6eriPe7Dh4vRgn9ipLiXd9euXZU4E2H0YIEWnHRsrmYYD4x2fO6U/J0ZNAcbrtoSli0GMmC2YBmMn99nerIVR/eLvDFdS5RWlWxlqi4/v5+onEqjJpp9l+tlR2YmysIlA9g8cp0ty7hZyMp0uT2Mk90BMnMJCunONFXXMwuBbAGyL4yf+zCXk/teSw4MD9Dxo2fyB1PnPQoE4no/VjUgvRQaIUGANsAunaTjXXYVycKoms5qZZUFW7bAZiFn22mNIm+PUPcIc4VTVpjEy24gClK+dS/KykI6Mj+5OX+mYdT2s8wSoyVGZxpGX/GKVxRlU4+nnnqqUMac6jhZjFJX4r/mNa8pXLE6OzvjM5/5TKUvZjpGq9upxGiJ0ZmE0dq+3vip1R3RUl8Xj/QOxQ3dIzFQW3fYerToO05nHYmYNzQYWxoao7ahflZgdHhkuBill3q0xOhMxOjAwEC8530/Hm988xujtrYmPvfpz8WXvviViuv0ZPXo6658dbz5h99UlLnxqU3xJ7/zFzE0ODQhRqf08Cg7NjNcBoaMlS0omYmyEPD/vFwvAC0nW+6qmSZbenK5OX8tMloaMv25g6rLdeBjXjJItXCRcX1nyHXL1qv8PAfrnmnLbS59li0YsrAkuNk6p+N/rX/Sm79lHMvLwifTYB2qXSsUAhng0pTbE0AqVCyfeFo3LdMT8AAp34KZemGxUmDLA9SZ54S9e/cWwkIwE8hPQMlrtmemI7dvFvjWT16xPQWllkHoJU7e+2BeCJvsagTNtgVp3cOgUM4XVmuxy21ZTeNMwyjPrrjiiqLPrrvuukrcEqMlRmcKRonzzW9+s6KcsSazR+hwMYq71Re/+MXi/ZIlS4pBsXuLZjJGSz1aYnTGY7SxKf5hW29RNs/7RvqiPk2WDkePjrS2Ri/7+Woag1rPBj06yGr1qe0x3D8YtY91RX3t9+92LTFaYnQmYLS2tjYuvOiCSl/W1zdU0h4ORu+98/648h0/UKRbvW5VvP3H3xaf+tfPTIjRKZvYZqBkJssgz4CwA6vTG2QyOz/nZ8hWGRtb5sjWBYPCwThOJnKnEmTuzKDmpQAbz7okA8tIdp7/m2dul2zlMZ5WsSwEBUOObx1znraLtJsf70yf65YFSwZVrnMWdLkvqts306UQzYC2zaRPOqyrwPCScABi3bBgZWFgeq1X7negnVgFpQye83vFihVx5plnxi233FIAXuGmkJB3cj9RpnySQU7wfi3rqxuLQsS2ked1/4BG3mU3DSe6tgG/vdBaQebegzz59fQ887OM7PaC0JiJGIV29lo873nPe078EqMlRmcCRonLlQTyL27JR4JRB4bkQ37+Lx/OVIyWerTE6EzHqHxo/JNNjw4PjsTQtp6oXdcetbWj7V9itMToTMJoU1NThUeGh0fixhtuOiKMbn12Wzx0/4aYO3fO9/k/TcirMTqle2xzA2Qmgfh8BLeNYsNmZZoZnbR2gtYFATKeVSGf/mbj2wDVs/psQaoGWw65zFzH3LnjPc8WERs/W46sU847v8vWP605upEQX3ebXKecVpoEkLT5keHtD78ViFpMrAvPsqUpW/dy+TJlLluml4kFWN5fwIdVEfLgfwDryonlEJcVD5/jZkFe5MNzaDO99ecbsL/qVa8qLFjsl8vx8v6ALKQy/+b62adZONk31RY/A++1vlGmVj3B7eRWt0faIQsx6a1WFPZbxoNtym+Php9pGGXf4tlnnx1f+cpXKulLjM5+jDppmyxGdTNy4vjiF7+4chDMTMAo/7Pi6pYB4h8uRrNF+qyzzircmVmxtV9mKkbNr9SjJzdGB/v7Y7C7exSjixbFi1/0ohmF0anSo/bjYFdXDLM/cZS5ZzRG++fURM3Sloj79kZd7YHXw5QYnb0YPdHGuv/w9x+JX/+tX4sH7rs/Nj6zsbiq50gw+qE//XDlNx9xNh5Gp2xim8FnwdlCIgPYecYTBDawQPf/vMGY/zN4BIuNYIdlxrNRCNkSbRnmlQWP5WSBY51y/XLe+Z2grnZFkaZcrkDMgst30pHr4Ucmy4AXPNkVxWV9g3ll9xLrat2J42bzLAiz1TALQekwv2prj2DXwiS/8L/WGphdy5PtpdWHjy4JMjDfCxYsKNx4FVb2A5+8Ef28884r9rhx/xUg4l0Gs3sPrLd1q96PIsAVfLZ13ierYJIO3mee1D3DtuF/0kOD8cmX+sp7CAj252XXKYUL5dpXub+yNXWmYZQT8q6++uoD+LHE6OzFKPFQtvy/adOmSWOU3xyqdPfdd8e6devimWeeKVypZgpGFy5cWOx3Ig/3Px0uRonHYOMtb3lLPPzww/HAAw/EKaecUngszGSMlnr0xMLoUG9ftHd3FntJt8+bO2mM1m7bGq8fHIhrGhvjJXffESNPPBpzz7/ohNKjQ4OD0dTZHev398SuhrrYumRBtOzZF3tbm2c2RruGo+7hzqiJmqitO9A1usTo7MPoiTrW3b1rd/zWr/12kUdbW9sRj3VzX0nbRGPdKV2xtVLVTM//WBsyUGQKBzjVgee6E2RGUoBki4Ed5+De9wJOIPvMjsq0ZOtZNfiycPJ9tqTlfPzWqpaZXxpk4Dxo8FtmkJ4MFtsyM3a2dmXLYC4rW7Wq2872yAyarTdZmGUhkgVXzi8LJkFBsAwtWOTFoNH6kk5wE2BsBACBOFqcMp1YsRQgWSCTVjoph4NfKPfmm28+oJ+1GilYfK7lyHfSprVbSx/PETj8xn3EehEUmlo5FYgKN8omkI70ruwgdOwzlZNuJlqnFCDUP1uFq0/fs4yZhlH5osToiYPRK6+8MjZu3FhMTg+FUd7D9/x/++23xytf+coizqOPPhp33XXXjMGodTsajPKMVd+//du/rfQ7k3/bfqZitNSjJxZGaxrq45Vb9sfWhvrYklYED4bRrt27Y2jO3Li6ry/evWdHtMVg3NmxIO6cQRidCj3au2tP9NTVxl0L54y2eV9fDMTIjMdoI8/qSoyeKBg9Uce6rVOgRw93rDvlrsjZupSBUA0u4xokOguBavCMJyhyWpnX9+bvqoINVQ3YzKQZGPn/bMHxWRYa1W4Q1SDO5UhLzrc6/1xH41rfDOhqq1oOlm9dfJaBnwVJdX9mIWcf8juDvlr46ifPN5Yj28QLlLXM2V6WC9OTd3bdswxPjOvo6Kic+CZAbCdWehhA2n6eXso+gy996UujCqy3t0gjvzjwlCaEhL8zaLKlLreLdbLeHs9O3fzYLioqAEha6sh7N/tTJu88DCoPMDPt2ZJHfOgiLc/yfhfS6FJ4JBiVlyaLUdshuzGWGD05MErar371q4U1FozKnxNhdNWqVYWyYyJM3ijMLVu2FKv4lD1ZjGZ+nAkYxTque6QWZ+lgQMKzU089tVitleajwWipR0uMThqjEXHdvPZgiMkg+1AYPX/n9miPiLtXr43awYEYHByKTbt3xyfqNh0eRtFJ46xWHjeMdnZGHX3Vz+FToxORupbmaKqvgwmip6sr2vd1xt6W5qibAj2a+WsyGCX01wxGzfCBV/+UGD3xMXq0Y909e3bHLbfdHNu2bC/yPZnHulM2sSVkANpQBJnE2XZmegEp0xCqrU8TgUXLiHFkZC0V0pA7TxqylYY8tFxUl2Ndch21LuRnxjNdpkX6MnAUArm+dnAWBDKYFhXqnONkev2dmTK7sOSyKQ/mzoDLVhefjTc4qq57Br9lZxpz/R34MZjlm8EgDL9nz54KqAThAcw4Zv3BcqOLh3svcF3QamS7WRdo4D3P2NuZ+UPeYJBNW/B/tlzlPuA35dpexsn8LD9mUGt5cr+BAtD2URBYXzfe54F75t08iRTo4sjybcPx3DMmg1H+P+ecc4o9GtDNHbm2wUQYxZX0h3/4h+Ozn/1sEZ99WCVGZxdGyZe9rvTfZDEq7khD38DfuJofDKNcsE4e5IkSg1dQ5BihwKh9NxmM5oHlTMBo5lnSya/m8+STT1boPhqMlnr05MRoP257XT1Rv6Bj8hjFfa+hITrnd8RIe3vMaWo6JEYfbm2PoZGRaKUuHfPjqn374l2Dg0X+nA4+aT3Kqs4MwujIEGUOROOc9opb41B7GyPoUSxwf2hjYzRMgR6NupF49U+9Km75wq3Rvqg9Nt63Mbid52AYHV7cEG0vXRld39scNV2DEftH611idPZg9HiMdVml/eX3/5eYv2B+/Ob7/3usXrX6pB/rTtnEthro1W4F1cpYkMhEVr7aDUAm0ZJSEFd18lz1oEJaMvNl94Vs9ckCIDO5v7PgynWyo6otHf7OdbVdZLIcNwum3JbVwoqQ01U6Kl0Obl7VYM2/+T/X137IrgvmJePYh+7/EAy2XRYu5sFvL5vWOuOGb/LSNYMBLfHdHM/KDx8EgHkDxnzSXfWKjX2cB3pLly6Niy++uHBvpAwG0QgZ0uW7wWwj3S54rkuIFjUEgvkqsARlvkjbjfCCVr4kPnWSRtN6VQF1xfKmm4WHUNAmCuXMLx6WUY0h27d6IjpZjJLn6tWri7bjehJW0pi0HAqjCDHcSh977LGiHjnvEqMzH6N8SOdVAsTxIAfiMOFkAqqrkBjFcuwgBN7JA6mJMOqqgvtYmeyxNwhjCpNeeO9QGCVv6Fy/fn3BdwT47nhi1D6R76YLo6UePTkxOtLXH3MWLYyBed/Xo33w9Rgv1z7xdAwuXxIDY3vCKxjdtm0Uo2MujpPBaN2SJQfo0YVnnx33f+sbhU6crB4teL+7J+YPDsfe9pZi5bZ9bLB7vDBa3zTqhjndGCXPS954UZx60bris+GWR+Lpu585gHfGw2hNS330P7I3arf2xWATc+NSj84mjB6vse6ixYvirHPOjt7enli+Ynk51p3KiS2hmmllkmpiJN5GMl01uHI+5kXIbhE+M88Meq0Dxs0NJJNkS5jPZVrSZ4EiCG3IbKnI6RUG1XWy/CwA8mAlt1cWSIbM4Pq45/r5f7Z6ZGFg3XO86nJz+1tP88htqhVF5s/t7jHmtl1mcAegAkVrFPnk0w6ZLCEIeKZrn//b/25G18pFvli1WAG65JJLipNWCRxQw0CYOLrVZCGlL7+DeRWO+xqy33+1gFHIWb7fWoTz3gvq671k9n++xysrLoAuX+gKopUtK1Z5TYuWfZv7+nAwykR227ZtlT0b8sTBMHrfffdV8qHPSozOHowaB2xljDLpfN/73hcPPfRQMeFU0WWM4tZ4NBh9wQteUFyD841vfKMyiJ4sRt/73vcWfEfct771rfH1r3+90s8Oyk5UjJZ69OTCaF9PT7S2tz9Hj9Y88VS8YPuueLa2JvY2NhQrpCM1NQdidOHCKdGjn2lujoWHoUf5fdr+3thdXxu1UROr9nXHnjlzRtssnXZ7omL0mfs2xtJTlkZjS0Pc8bW7J6VHh5/uiniqezRu90jhQl5idHZg9HiOdZ932fPiyUeein2d+2JoYKiY1JZj3Smc2OaZNt9aQSQquxmoZDPzZtAYZKjM4OQr0E1v+QQBaUNWW37My7xt1Or9A1l4EPLzXF8bXJDlwZXlZgBnQVMdp3qpPdOcOzC7RGSgma7asudv/nflJVtzcj2zNUjG1wKTXSiyxTILCd4BTOK7Sdz6wcSCwgMgbId82poWTVw46B/j214AwH0IgJ58+a2bI4AnHtdr2DdYi3DxsHwtbqTL+wYYsPNboeWJe7YL+WqxyvdVZkWQB5z2u+2k0IdmhAmCjb0X5u2GfuJjQYPmapcLf2fesZ8PtufgUBilve+9997K+yzcJsJoPpGwxOjswajXEsDr8gzv4bdFixYV+0E//vGPF+6H8LsuTFOFUbwCXvaylxXlcfDUZDFKvp/85CeLNgKrL3zhCwvPjNNOO62ygjtTMOo1JA5QpgKjpR49uTA62N1TWX3JGG3p74ttDfVx14ql0dHdE80tLVOO0SPVo2Bv9xnrYri2NjqGh2Pprs7Y39kdc3r6onvJwmgYWzWaKRgd7umN2pbmKcPojmd2xlf+9upRLIwcOEmYCKMjg8NRU+rRWYfR4z3WZQvRimUr45p/+Xpl9bQc607R4VEyQmbe8YCY0/hMpe9zCZfRjJetMhlkOU22HtnwCqAsTGQwNyjnMkyX3RWy1UcGIGSAS7MWy2rXi9wWgsw8chtkBZYtFj7LwXr73PpXt7X0a70RtPl9PgWtYIKx9s9WHZhPxrY+gE2XAfO1DPtLi012JyQ/259n5APzs2pYuA6NCXTv+1LR8w5rGGktT4UuOBiUs08UEFEfgMUqlO4lpCdf8sdaZptprSJYT900BXNx0mQS9HzICwFA2eZDHC+Bt77ZjURBo+DkG3qzpcv8bVvi6K6SXWGyxbZaMRwuRhUa1q/E6ImJUcuqxii8zGTxox/9aDFZJA8Vy3RgFMvz4WKU4IDlAx/4QPF94403FvEpayZgNCtdJ6JThdGcptSjJzZG61u/f3WIGI39nXFqV2/ceeqaWLBjV7GXdToxeiR6tL6hIbp27or69rZ4dOl8ABu7G+tjTmvLjMFo7/7OqGtuqkxqp1qPFro0amO4ptSjJypGZ8pY90j06PAJONadsoltNVAzg2drskxbDWDT+jsDNgNJkGUA5PKqfdEtS9etbAWrZliBlVeqcn66F1TX1fL9reUs+8ZnUPFMYGvdExB5uT+7RFhOFhBa38zDMqTRumRrV77z1LYRUONZrBReWmy4r9LDmASYlh7vp/I37wCo4HKfAcG7vHQpIG/i+l6Fbjl8k4Y47PUDqPyGwbmMWh7Rbx9g4j5JHNxqiYd7BnkBeCxj1EV+4j2Wr2effbZimVIQKLgRRFrdpJt6aUGrVjSUxXPdLGgXyhawmYcFdPVps55eZz9mt6S8ry/3tcJTgV1itMToRBglvs8yRnn+ta99reDtp59+uoKrqcQo+7d5hvvxZDEKPdSN3+AKSzXlug/cfU4zBaPZ/UxaSoyWGD0cjHZ3dhZ7U2mtjNHhttbYsHxJ8a67qSkG2T/b2zulGO3btzsef/SRWLBo8RFhlFOIG8f0/9Cc9ujb3xlzFy2cURiNhtGVpRKjJUbLsW7/CTHWnfLDowRGBmoGtKD0IxNmYZAZW3BKuJ1v5WykvDSehZSMKzhyedX0ZqFivOyOYCPnJXIbX3oFiADznSCqrq/L+lqtjGN50jKeNSxb6aotaT7TImN62yjXkZBXFnSrgDk9lY0Ln2FarbauihifMnAxoJ6k8/Q2ga6glC6ARRxP6HO/ARYg77syvW4RHhcOuAANg0b7XcZHCEAz9FJ39u/xnme8c1M/H/730muEAkKDciiPwTZxGDALZIUl77W+kSfv5ROEiAIO1y3v36LfeMZv60Z+ChSCd5UpKLV+ZV5RaBK0bNmHCiCPhi8xWmL0UBhVkfnMdtMVSiWV9+NMBUalHeuxF8wfCqPUYfny5ZX932KU9qPe8ttMwqh52o8lRkuMHi5Ga+ifsbpnjDa1tETHihVFftOB0Yb6+nj3i8+Llob6+McbH5g0Rvfd+0DEnNaiPA6dy3q0ee6cEqMlRk84jJZj3X0zbqw7pdf9ZKuPzOC7LAD87Qw+x8lMm60zebl6oj0HCgB/57TZT96yBZflZJDZgXaUFhr3E5hOum3wbJmyzrZLFnS2V7bcSLfAqBZquX2k1/rmjeI5LcHvLEQVNATrhWXHtsFaw4oIn1e+8pVxyy23FIe1ZDcFGJuP1hcAD4jJS0sL+QBgQCrw/IZZeW97k49HkvMMukinQF+xYkURT+uV/aLlhvL5AELAg4AwH2igTJ7nE92g08G2wslT4gikoQzoUAB5xLmuFOxDAuj2o9Yk+0twF65PY6s4brDP/K67Ce9UTgTdGhXe7knIysx+y4qpxGiJ0clgVF7OGNXdZzow6v4b+4b01Ri1T7W0gzH2DbEniN+zBaPk64TcskuMlhid6Rhta26KS9etKNIsbm+J/UOH1qNgrOZ5l0TN9u2zDqNtPb3R09pSGBJKjJYYPVHGuvt6OqOprjFGxtqi/SQZ607ZxLbaApQtV5mxMtgFpHEl2FBtnZGx7ZQcR4bP1itB5rK5G6s9uTXTk61Q0lNtAcqCMIPJulQLsCxUpEGaM+gFoaskxqkGaAZ8FkzSryDKbiHZBUF6cn0tQ3cHffvPPPPMOOOMM+I1r3lNcXiMJ6ACdhnQ9ABMQQfAyNuN69nqJcNrCbK+Mi7CBloBD89wxQBs/DZPgMk9fDK/lrPMQwAPIFInPrYVzwWlR67zHHfLLERtc+imTI9fpy7UVSuYgitbLcnTY91VFtXB0+6yhVRaoJe8icOAmLIZ0DuAkGereTULiExTidESowSUkodbHG+MUo6WWnjcPhej8DsnHWMJ/t73vle8E6N5wDQVGM3ufkeLUdqXwdGmTZsOwChtwXeJ0RKjB8NoI/vQunuitv34Y3S4piY27dobdzy5OXprG6O1qWHSenSqMTo4hRjFtbtx3/7oYhKbVvX6MLaVerTE6Ak01t29Z3fc27glanqG46xYFvPb5500Y90pOzwqM3m1tcpKZ+IyeDODCkqtAG6gFhwZ3DlPPgwsXA2wfN/DhDAT+SqUs2uE+UkPn2yx8l11I/rewdp4ViSDnWD+ufPM27a0HU1nGp9noTieMMg0w7TmA4NSTnYNgA5+0z5Ya9auXRtXXHFFcQ8srgq6LAA63QsUglp1PMiFwP9ak3Qb0KpEGvvTPQ3Eg6H1sUeg6OdPoEwADoigAcHDoFe+UagQr7gGoaamqIuCmff0OxY2yoVO/rc/oA3e0dJGgFYsZbldFU7SrkuJVivSQpeCKCsqB7byqUfB2/4ZP56kSjzaUcEpr+hC44l/Wdh4D5ltV2L0xMQoChhMXnnllQWPgBkwcsoppxT3CVs36+wde178Tp9NF0aJSzpPW6zGKHTrqqR1uBqj3G1LOrD+sY99rHKa41Rg1EELfIVC5Zs7eY8Go+D+zW9+c7z+9a8vrP1f+MIXin3E0lRi9OTE6KntLfEDCaObb745Ou65L+raWp6D0Ub+B6OdndEy5sUwnRhtHB6OnbgyNzU9B6MLFy2Of7jtsahvaCzqc6z1KDS2DvTEwPBAvP7MFdHZNxBffXL7UWF07+7dcfqOPXFG32Bs7RmIB9qbo3fMJbLE6MmJ0RN5rLuvuzP2dQzEUNNQ3NH9TFy8a2hK9ehMHetO2cQ2L/dnwGRwVlurMvHGM07e/6AbTnZlUIBkS1YOWrJkRjdjU5aXB2eLWf5NQ5pWIWVHZLDpNlFNv4yR65eBmhlA60uuj22Y6cuWq2xp8bdWoInaWIbNQLUs87PubnxHKfM/1iC+H3744cLakwU3+dm2MqS08A6hCpjdoK47ofXSDUJXi9zHAFu68f/XagMAsG6Rv776pKEc+la6iCcvkTcCBAHgPWFejE2ZxZ6isb0EpGfzPXHJIx8/roCzbQWZR5bbppSlsrIvFESCVEDmfjAf4tOmCBwtp1rRpME62A62pXsrSoye2BjlHXvYuGcW5QdG3MtDOcapxih4nk6MasnmDmQHAONhFIx5zVA1RqnHVVddVUzQnRxOJUapMxZ6Xeg4fIPBxOFi1Pi887ANaOOqJNqDQLtTjvurSoyeXBidv3hpPHDHHbFg0aLY8uEPx8q9O6Kub1/c0twYtV2dMX+oP3oWLDkAo/uS+910YHTuxqdj3dBg3FtbHw0d8yfE6LyO+RNidLr1aE1vV/zui8+M9gZ4KuKaxzbFyBPbDhujvBOjjdwDOsY7bVET/UyCwHFdfTG5Hxib9JQYPTnHuugAdMHdd99d6K/ZPtatrauNpbu6Y15/Y0T3UPQ39p8UY90pm9i6TK5LhBXMFqdqC46gEQAZRC7ZZwuYn2rw5Hyqfa1tbBpBN7xMn5Ymy8k0yLiEzIiWnS1NAjgLgGyRkj6D8XL6LCiqBUe1NaRaeNi+uU62owLRMj3C3LRu4nafAAzE8eHcEwnDwUSAjXsmAb6MRRoARgDA+QhzrUfyhvS6L0fwwJhYfcgPBuWdgsJ7ugQBAYuO/CBjE4iPC6CrQHkzuu3A4L84wGLseHHzpGwFPGncu+DBNgoM29Q+s609UED+4H/jZ+sXvwWuFqZs+XPPgf9rHaS/FBZ+m4+CLVshtaDZ/rMRo7pPZTeoEqOjGNWSi/JlknrWWWcV2MTKzKojWIRvVV7wkO4+lEva6cCo6ShDV9w8cMsYJRwMo+API5onW7pfb6owap4GlLDPDwejpEE2ul/rzjvvLGjixEnKcx+kA6ATCaOlHp0Yo127dkb7wkXxwB23R+euXdH8xS9Hw7lnx9CunbGkZ0/U1tVE1969BT8wPWxFH/X1VTAxf+HCacFoD/dTb9kcfXPnxT3Ih4bGGJlAjzLhO556tK2hPtob5MOROKVjTjTUHT5G+3ftil0NDdExf370d3bF1raW6GsYiK7mpmiYN3d0QtHZFfWUPbZCdMJgNAbjvBecE3ddf0+J0UOMdclrweL58cYr3xDzl3YUZyLQjrN5rDt3ztx4QdvZBf72xujk+WQY607pHtucebUFxm+f+ywDIQ+EZO5qQFRbxnyXgWe+BjuDjqbzsvDg/+xuIfAJCm47UeHjt+UrEDJIM80yth3sYD1bxqq/tZL4TLcA39le1t0legdQ1e2lFUTrRhYEMqWb6j12GxBu3LixaLfMPIDZVRUGyeajwBCEghoAmtaT1IjHYJJA3gzQsdjkzfYIDuITj7L4nzIQLOYHzQ4c3byv0qHerJwAWvKnHPJl8J/BIjjkE36zSuRpk+P1dbWyIa77H9yP4eXcWXBrYbIvfZbjaQl3v4Ht754aBbaCh/S62uS9JbrkzDaMehfb2WefHRs2bKj0nXmd7Bj1JEInuaTFCnz//fcX/7s3R9dHr8TxkIrpwCjf5IEb9IMPPlg59r8ao/nkRHkUi7EryccCo9CiLFGuUZ4W80NhlGceGuIgR+WMtR+ZSXC1xLLdT6SMms0YLfXowTHaJEaHh6IHOb53b3Q++mgMDg3HvSNN0dtSH+2dnTFnyZKiPZcsWXJMMNp4951xyUBvXDvUHnuaW2JwbBBdjdHhru6o2b8/YvnyaGoEo/Oje+yk2GOF0cbB7krfdA0MxM2bdkRN3eQx2jTUH6cvao97tgwUtLMaOzA0GIML58cW0rDCLEa5D7SzMxoGBgsDQ+OY6+VsxigyauG6BXHemy6OBx58OPY9uzeGh76f/mTHqGNG4sKnb/uRt8aKlezzZE9oOdatn+Vj3Sk9FVnGyoOX/C1QBKtMaedogcngUWGav42vr/Z4VqXceIILhiFUW5vNW0D44Z2n/mVrUq6jtDpIElA5/2zdcFVAMFtOtaWv2rImoHynUDOeALX+0uRSvpYQf2frjqsXPNcdwMGb/vgwkT75hRV0zN/dPXRZ4DGghtEYbAtu8hJM1pv8tMrIzLpxkIZT4e66666CPujXysMnrw7pWsGHo9GZkHuHFnSRF4AhDc+pm+5VWvCgBSuX7ida0Gx/ykfAkYd9TT087Y5nDNBzHfIVCFqxCOShRQv6sxDXWmcfuj9GGlU+CFn7jbwVLNl6lxXebMIoz9n3SB1/9Vd/NVatWhVf//rX4z//8z8rrjgnM0Z1A0SBEdwmgIJi1dYJVcbUVGGU/8GXilmM2nZMrm338TBKP5EGBXzaaacVK83i5Vhh1MGEPMnqKquu0HoojPLNBxdw24qV5fPPPz/e8pa3VPbVUja0ELTQq7Spbx4IzkaMlnr00BgtBnG4Ow4Px972NjIsXGHrcCHEI6WtbVowOjw4VOwlnTd//nMw2tfWFl9auXq03XfvHhejAzt2xvKhodg7MhznPPBQPH7quuhrbIim1tZjitG3rR51tSR87dHNcdVTuyaF0WLw3tUZf/yOV8bc+tr43PX3xOee2RlLunri0s7e2LBwXgytWPZcjI5dnSRG8yrkbMToyMhw/Mx7fiI2du6IoYvmxdaWvdG4Yyjm7x2dHJ7sGHWsOxIj8fO//DPR2NRY5Dc4OBw3fPfGypU55Vh3aFaOdafs8KiJLE/5/wx8ifK5/5tPVpaEDAJXLHK+2Q0gW3sEp43rJ7+TZpm+2hLgKmYWMlk4qdAz7RnogjsLjQxe65nzNmTBqECyDfJ7OzdbMhzE8dujyrXMKHi1umhNsr11G8gClWcAxgvYtbooTGRQ87TdAYqWRGhAIPCefKAX5sVqTTqtYI8++miRJ0JDaw9WHZWO/VPsnRmzZtlPtjW/Gbg6QWfQ6ZHl3PsF3dA7KtAGCxqI50EyWohsc34DOjetA1z3JVAWgsa9GJ6o5wE58md2L6nea5HbmgCtWr3cP0Gb0k+6fslb8rOWybyCcqwwqktJvgLiSDFK/+AOxCT3RS96UXz6058uMTqGUeUhK6T//u//XmwRAJdMuMAUiidjFL5EmR0tRrEKi1E+YhRcao1lkngojDKoIB444fmxxChp+aZ+DjxIPxmMkoZJ7BNPPFG0BfUmLX3yV3/1V5V9W7QpbU4dKK8aa8cboyj3kbGBcKlHpw+jI3t3R09LazR3jB7kQ/5F/RsanoPRPdu2xcLly6cXo/MXFiuVB8No/by50dPeHu3NzbGVgTfuks3NxxyjX9zVF+cuWhfDI8MRNZPHaM2efXF6TURbQ130bd8dr7/0rLhmxx0xODwSty7oiDrijZ1WC0br9u6LkVUrZxRGp2asy4S9MVa0LYpF7XPj6Ya6iJWNMbivJ+r5KzFa5EW8zZuejUVLFsXI8Eh86j8/Hdue3V6UWY5122blWHfKJrbZ8qNQ8FmesQt8gxWpFDpmDXGZX0tLTiO4qgWEvu5WXsFgp2WLlrRIs24LpCMf6bBjsvAQTNmqJhDtxGytyZ1h/naMoDV9taCyDRUOxtNlyc7NNOS+oF7ZKqjFScuHeSvkcl/Zhq42AEz3ommdkWGJr2AkjpYbN9BrzSLwGzB52TN54C6ZXSuhwbsstQZpvcobzD010vbQzVCgkd4N/QSeu8eQsnU1IQ/yYyKlZU/LmO2u8OLbe8IYoGst05olvQDcDf7yoPeWZQFju8vb0Ey5uqp4MID1JSjg8oE0xNf91D46HhitHP5xlBilL/72b/+2klZ8nMwYtd1tY+oBP69evbqgEWxVYxQFRAC/7hM6UoxCG7zP4JkyHn/88YKeyWKUcsEEipaJNoEL5inrWGDUQ25Y2bbvaBNoORRGCS984QuLwzxOPfXUYmDgYSAeEkIeYlRruH09kzA6woBgrPxSj049Rge3boum4cHoXrAw1mzfFpuXLY+mpuYCG+Pp0f07d8ZIQ8OUYnTPXffEftw2ly2N5rbWyWO0o6PA6LaNG6NjyZKou+e+WNLZFTsuvuCYYLRr757oqBmKHz1jWVEWV/I0NbfE/PmH1qPM5lb39EZ3c1PsePiJGNw7ugpUnI7LabZjbqgGymxeOuoGPtMwat5HilHqNNg/GA/f+VA89p93xfwa6jIYTY2j3ionM0ZzX/H/P3zwI5W8dNctx7r1s3asO6UrttlykkGdFWAGbE6bgZMbtzrPbBUynqASNLnxpEMLgmmydTlbrQSH73OeCiXyodPsVIGfGUIAjGeVomO0IOX6ZYHGb/PJ9ZDpja/gs84C2XQytBY1GSmD1LaSacnXPQG2AUxkPQGcKy0M8hxkA1SARXlaXUmrW4anusmcgJ7yvLcLa5Mb8rMLA2UxOHeQmAUaaXUdMpCGgTdMT1meFKubK3E9GAD6dRNB4PC/rhtaowQe+TEAlk/4TTqFDfR6dYlHwmdXJfuF3/lEvmJPVlPTAYdxqBDkPYW0/SPf6PqiBTUPOMezNE8nRuVD6gX/qPRyPSaDUeoCLzhgyLQ4cThZMcrvyy67LK677rrCfYmDL1jRdpChQhej5kNg8otl+GgwykqlsoEDomyjaozmQcp4GFVZsfopfccCoxmXxGGCLXYPhVHS3HbbbRWMQjsTe3l0tmAUl9ghdCC4gS85TKR/IKJhtE1KPXr0GF21a088tWZlvHpof9y0dFm0tbWPYrO3Lxrbv3+6p7xb9+ymGOjrj4V9A7F53dqjwuijD2+IuR3zogmdvXhhDBaD5pbD1qOU2bLhkbh0+47iSpxjhdH6puYYYusT/FhTG1c9vjW+saN3UhiNwcHYe/qpcFf8wYbtsXTXnuif2xo1c+ZFbdpbOZMxOpVj3T//jb+JWiZBdaP9V+rRQ491XZGdCWPd3sG+GBka9S4qx7otk8botOyxzcvNPs+KUEacKG5meCsmmLJgyODIabIwyEyuf3e2VtmgDghN5wA9u12ZtxY2gvUyX4VDztu65m9pyUDPv61fHiTqypH3WwjyLGgyXcbnuVYP2wnG1OIhc2t1gfGw1JCe/wEAlheYH0FAOl0psALpZ096T5vzYBWAJz389k6rbPmSLsrwf/cRZouibg6U6Z1ggoffMD4DfaxLgMuN9NKFEBEwnmRKXHmFD/FoD0BMWwAoyvE9blzkbT2gWWtcdqHQGmffZaFPW+fBBfEpz3rLKwp3hBp1UyATdKm0P53ckCf95F64Y4nR3/qt3yrKff7znx8f//jH40tf+lJceumlxf6Rw8GoCqjE6IEYhc+xAMOzHuKgUlSRiWPvpYM/3fOnZfVIMIrCddDD3lit6e7Bl3c59AsssveUfMbDKC5e8Ogdd9xxwLUh041RAjKB9Ch33EGZrHvfYcYoNLAqyyCG5y94wQuKdxgTyJODoqzTrMFoRLyoezD6YyRWjdTGPXXD8VjdYCztH4xttTVUetIYLfXoxBjtm9MeHV3dcefa1VEzOFpeH4PNutrRw4nGruvYu3VL1LS0xr76hljU1BztY3daHilGdzy7JYYZUA7PieEli4pDrLr2dxbYFaOT1aML5s6NprPOihsXL4resfyPBUbp2b7O/fG9Tf3xurWL40WrFsSXN+6JhubnYjSYDOzrjNoVy4rnC5/dHvXgatniqJ/fEYNLl0YNtM0yPTqVY12aqsTo7Brrkv/Gkd0x0DoUaxsXF7qqHOv2HRZGp2RiK2HZsiRw/Z33bY7nWiDIskVMhs/++dkyKsNnsEiLDet7rfR5lp/TyvCZpmrLmpYGAVi9DzUD3E7XmuB761Y08pjws+38lj4FEHlqBTGfLCSzdSN3vnR67LmM7GA4W1K8602QefqqbsiusnhXIwM+f0Orp5cBHmmyLK1VpHFfgGCnPOsFs1Kem/Z5jrBwA73WQ4GquwLflMs3QsCVFJU55eDySD5uOue91jrSkS+0MpglLmnuueeegmYtlwBda6euFvaXvJPdVaDZgXG2PPI/72kXLV680ypnPAFNfloHC/epsT7IViv5WGF7rDGqEnr5y19eTGp0z2RSW83nJUaPDKPwANf7MKmCr+QJ+cKrHriXj3dYhtmHy3MstkeDUduI/Fn9BWO/8iu/Eh/96Ecr+4lIz0rmF7/4xYKGaoxSDpNJFDLp+Q2WwdWxwiiTauQbPEogL+Rb5pf169fHk08+Wezt/trXvlbQwGQexe4p07MSo/BSTU2cMlwTe2tror++tpjsbm9pjLqxgYV8UWL0CDHa3BxL9uyLjXPbYve+UT1aGIB27YqR/Z3Rv2D0btgLNj0T+6MmHmpqjou7O2NLe0dsXndKtI65Dh4RRoeHoq6xMfZymuqTz8TwiqWx4rZ744lF82LRBedVrv86mB7FRT1jtHbx4pjb0HBMMVo3f2Fcv29/XHfrU4G9ZcHi52K0fduO6F2+NNZs3RUbxyYRPQvnR8OKZbF87JTp2YjRcqxbjnX3DfdEz5yROLN/aZx+yvpyrFtzeBid8hXb7MKQLTeCIQMop8t+79lKZSNk4SCQZHaZv/o7W5/MNwuibOGSLgeHujnY8NKrYnC5X9/0vEdDJhecGcy6iQjI7DaSVyalObeTITOM8bN1TKB7OqoCxc3mru5kC51WGPdO+Dszr24eCAKYUuu0J7iRP4NG20RffkBhH/Mc67HuzbzXTYPAO/KSsd1oD0hdoUIZQ5eDVJ6xZ46BKvkxgIcmXCm0DlEuK11u5HcVizbimS4OpHnNa15TrM4Q/yMf+UjhykG+XqKtq4r7G/JhC3xsQz6eZpcPIKDNslWM/xlIyJ/km4UDcSyb4B4s4kOvAsB+o23pI/deHEuM/vEf/3G89KUvjZtuuqloJyY3uKy6B4V49PHJjlHz9qRxDQOTwej1119fUTJiFKXAKcNMxigLF1smnygneMHrCOCto8EoH/DFe/5nVZ7/UY6U6+D3/e9/f9x4440Fduh3nqGEueeV/483Rj2AQzlJ2oxRAoMHXdMcTNB2sx2jN9QMxJr+odjU1BB1WOsHh6OroS5qRyIa+gdihAnumLvXyYzRo9Gjjy+aHzVjExQxOlBfH6+pG4xruSqpuTn2NdTGquGReLKpKfYsWxY1CxZH7eDgUWG0oaUl9m/aHL1gddH8qBscjMc72qPj7DOLrQuH0qNg9O6rr46GNWtmBEZHJsBoTdRELatuzS1R29IUzbg/1tTE0ssuqfD6bMZoOdadHEYHMeRwwvGcuTE4MhQNtQ0nxFi3f3gwttU/G/e27YgdW3pjScO8eNUppxQ0lGPdoUlhdMoOj9K6ky1YBi1M2UKVLcPmkVdzBEOOrwDIFhzLNW8bvdoKli1cmS5CtmrxrTCR0c0nu/5ZjtYPgtYu87YDctnGycDPPuJ2enax4Jnx88llWsqyYEQQufyvvzrp9OXXoifzWA8AptXMdsiuDwDINmUlSEuKfvsEmJa24XRWvgGefURcgG2dKB8mlgbdCdwriOBgPyEHtuAu+L3vfa+gh3patpYoAIhgIJ3uM9aVAb4g0JLliXkEQO39mij2M888s8iX/1/5ylcW+xlxP8xA9tTLzH/QwIeVHXjCS7LlTY9qV+DIAw4yiKObo5ZBQW9/8Nxj0R2Y8E76dSkhj+q7vaYbo/xmUqsbCXVHeK9du7YQxFp8s/I/GTFKnJ/+6Z8usPLQQw8V955ygiFxJoNRy/ECd/IHg6zi2me0O5NIeND98fDm0WJUxUwfkx7s4Gp+zjnnFHwJRuF/MMQ7J5C6JJ9++unF5HemYpT2ZaWKPGk3Ju5vetOb4txzz41rr722KH9WY5S91v1DgVNXTUN9jLBq29gY87p6orOlMQZrRuV/nOQYPVo9WtvZFf2LFlYw2v3MxmieOzeuH14QNUyIRkbi0bkL4oHe3phL+uWrioONpgKjNfPmRtPwcMH/Dbv3xtz1pxSD18noUT6nXXHFjMZoMdnauj3W9Q9G82NPxZMXnxcX3/9QrHn62djQ3RtzXviCWY3Rcqw7eT26/Yy6iBb2vHZFe299tNeM4uFEGOs+uXVH9LYOxNKmjrhg9VkVPTpbx7pbO3cUJ6wfi7HulF/3kwetmZEzwTJUtuxk4MkYfmdrTgauDeYzghYUrUf62ue4mdZszSKOnUlwIJ7BKuBllgxKAWd8LUUKk+rN8bndtOJldw3bTkGS28d6mLfBS5s9gQ96ZATbUqsS6bTKETxSu+j8MeGAhQSAYMmx/bWESQO/YTwY3PxQjAQA6/4G9wd67Qj58w6Qaw3iY/3sd0+aow5841pJyFcacN0JtCg8oAdAjt7nNiqsve9LAe3GeYQEwiuflkogz+9+97uFiwb0yRvUwzxoZwScR6Fblpv13QvpIMIj1sWDR5h7pxhx6R/o8jQ7P7a1/OfmfE+Ly1ZZ8uD+16uuuuqYYZT/uU9VXlfRMXGrxq38ebJilPjr1q2La665puAzrcyHwqirR/ngCdLS1+TjflfdnqQBelBeU4lRVoVZBfLgDPAGPjlgCcx6sb0u6bbPTMaoA55vfOMbB2CUwKScK6dIO5sxuquxvtjHCHfjtsrz7raWoIcK2tAb6eqFkxWjR6pH23Bz3LsvWsbuei6uyFi8qILR4YTR2sbRgXvRT+z7HsPTVGE0Fi+M9jF3Y8oGb7u3bo26lpZZq0dp00Xr1sW+3t7Y+uyWUbyxMtVQFwNbt8Vjjz02q/VoOdadPEZr6gZjcF5dNGzqj+WNHcUdzl7jM9vHuutrl8SlrQtj/cp10dnVWXHznQ16tLlqrFvEvaAtdjQORc8d90VzQ1P09vROG0an1BXZTsrWIzshgy1bpGQgQeO77K7HOyqQwZnzqmb6bKVyw7HWGDtbQUJnaZFSaOT02VpmHXS9oDw6Tvqkn3fuOeO3R3abr+VrRZKxBbnxLdNO1FqlRYv/tWJ5+Alxtc5oIXSQK0PoTkAahZNWOzeok9bBs8yDhUTffn5rFQMgWrYUAoCM51r4+CAwiKfbAHlTDnvyWLnK7xR85Ec6LEOAlziUq3WKtmA/nKuEuL0iaBBQ9oG8xgTLC7FVMvkyawQFAP32t79dtMPNN99cKEmVBnl4Yhy0CWQtWOSNgEAwud/Ee7+0iEKfh4N4WpxtzIf/5TFxo9U2u9joHpT7WYWnm8l55513zDHKymO1UlJQidE8EDhZMfqVr3yl4DN4Gz4i/8lgVEum1loxShCjKgtWHqcTo/YreXHaMrzvZJo0KHbodX8THybzR4NR8HnDDTcU9cDCjCFlqjHqiZXUjTK42odnDiRmO0a7G0ddyVg1HBejVYP1kxWjR6pHh8ZOCq1tbZ0Qo22trTHU2xtLzjxzejE61l78fnTDhti2Y0fh3guds1mPitH2VStH+bGmJu699OKoaW6K2jH3ztmM0XKsOzmMLt5cG8PbhmL+UHs0tTXGcN3wrBzrUk/4/c577oo9u/aMHiRVVx8rFywt9Gj7eW3RvLYxenf3xNCOoVizfM1RYXTXrl2xa/fO+PRnPhUL5i+MBx98cNrGukMxHPsWDUTN8raoq6+N7pfWx8B39sfclvZpxeiUrdjaQYJSa6dMnt0BBIcgJsjkMkx2T9BKpCVJRtdilUGQ3SWkSwGRGTuDNQsOFZrl5ji6KWkZsxMUANZNhs1WPdLJNFnAZdBWW/ysg/Fy/tKoVdAN7eO5vmCp8X4tGYO8nFwBZPtHP34sQazKZBcZVmg8eZVAPMr1VDhoRGAATOKj4HGLdCDuBnPiwZA/8zM/UxyGg5vfP//zPxflkc6T3siXtgbAKgeEBmXqTgHgKA9l6p2eukxSr3z1DID2kAD3XagQeI+VidUaJmi6a1kPD+ZReJEuu4bKhxl8YiELT+IpaHUNoc3tSy1k9p1HzpuWMrTqOQCXH/mQF+2ndbLE6MzDqFZUJ6mTxWh+NhFG2dc8nRgFG2KU8nFDRimCLQMYhW+x8NqelI+B6mgwSnpcte69995iDy+Td+8bnA6MPvDAAwXPYM2mPrpYlRg98TF6pHo0urqiZsw9biKMrj6GGO3duDmejppYtf60imvfiaJH+Z+872VluiaiJV29VWL0xMcoh5oV7d04u8e6zXOb4syXnBbDtSPxjX9/9ICxbt9wX8xrnBstc5oj2mtj91NHr0dr62rjF3/lF2NoaDD+5s8/EE89+XRRt+nSo921O6KnbzAGbt0bzd11sbBt/rTq0Sk/PEpQOxO3k/mtgBPo+dQ4GVcmlNnzCo/AshEEdDUAq61gpssCSaY2nuXYWTAzjAJjZqtVFiL5PilBmPcj2OEKNZlApjUoNLKVPAM6C4BsqSMfOtR6uJ9NKwfvYRLaBUaxLtYvWz485pt8YCRAB5MpEHjOewWS9WDCieVGNwd+e4IcaUiLmwArOl4xQFzKID+vG+AkXVZiNmzYUPxGEEATeer+QN7udaKOKE3A6z4o3UkEADRSd6xrpAHgngjpce4KXixC7EPiw2qa9ScO+Qkufgsi+ENXM3ndo98V3gpF24I6M5nVrYQ47qsif/tDXoJmgEta0mS+FuS61ECXtLHfUheZEqMnDkY9qRIFSpgMRsEI/My3e4SOBKMve9nLihOCsTij9OFL4l9wwQVxxhlnFDyn2xo0MOlkkAzdfFMG30eDUfZrw9eULe74TAdGyY8ycXFCDjloOBqMyh+UWWL0xMRoe31t9Pf2HhFGtzz5VHQsXVKsqh4pRtGjDz7wQLQMjl6dUbtjVzSNRPTtHNWV0p316M4dO6Jp7IC52ahH5yxfVjkd9Wj1KKeDNw32R+OcOSVGT1SMzrSxbmtzLFq+MGpGRk8k7uO+6zGMzmubF8/euiV6unqif2d/LBheGDs7j06Pnn32WTF3zpz49Cc/Gz09o6cR05bTpUfndzZH48aumN+xPGrbRg8em+6x7pRMbDMDa/HIFhp/VzO71pyiwDGf+/zbSstkMrrA1bolIDLQ+E1j626Q3RukU5eNaguZLg/e/5bpMq3l6HohEBUKCiytVQoy3punFiqBp5VYIZGDcW1PLR5aWfRJ1+3BC4157h1cMI7uA+Qjg7m3jP910WDwSvsQ37u+eA64sRS57whLli6S5OFeQfLnGcxNWuPxP8eaux+PzffQg7DgkBbekR46iOOx4PABz8jHwbJCUF5hEqzLhYNR+jBfV6L7bz7hjjQqI9wlAQvpX/ziFxfWZwa3rkJRDoN2BBKA8s5QT7mjjxSw0sz/tCV1pw/IQ0ubfOcVDFqnXNVTwWVFI90eaU8+0EZbe+JftVIpMToxRi1/pmMUHuG9+3MmwijKGv5UUbCfDpclVlFIB3Yo61AYhbaPfexj8Yu/+IvFhJY7asnbQyx0e/LqnGqMel+sAxHKOxqMcsDGO97xjkKB33LLLUV+041R92nxOVqM2udc0VBi9PAxWpsGuzMVo/WsIm7dGX1NTYfE6DxcHufNiyc/d1XM7++PVfs6Y+DKN8TchQvj2SeeiMWrV08Ko1/58pfi3T/+nnjkvvsLTF1w4YUVPVq/cmX09fZG+5LFxZVD1RjdvGlTnPPIg7HxshdEa+uo4etk1qPndO+IFbXD8fHHv39dS4nRcqw7VWNd2nnf8L5Yc9aaOGXpKaP9OBSxZ/ue2PzY1nH1aO3O2ognIua3LYiGxqPXo/X1DXHPHfdFS2NLNDU2FVidboy2tbZNmR491Fh3Wg6PEjjZAiWjCjziyPA8twLZymReug1ki5jxBSzPqaRpDflEsKJSKS/KtkwbxyVuntGR3quk/7d7CQgCz/oLUgWLTO9zac6/q4Wf7VJtgZMumYn8pcPDaIjn3gBoz5ZLGUJG4HduL4BnPyEUuDrkoosuKt7pQkj+MCvMK+2UC5NhYdF6xEcXIfLl0BWYECEBzVp+YG5cCsnXyesP/uAPFuDCBVCLFnm4X9C7rgAae4KgzUunKZff9DfAQ6napvAIQsUVI62eBI9AJ2/qwWmylMkdlm9/+9uL+Ayi7RPaQEsc37wnncqC59Sd/HQxVjASh7q6H8H+834zhI5uPOSd7/3KF26Tj/e12QcqJIWDfX8yYFQ8eST/4WI0W7qPJUalXTepQ2EUZQY2wQg49ZoO8s8Y1W0I2uENsPetb32rSE98aHGfd8Yoh5ipnFQeuE6Bife+970FvRdffHExUeYd7sCf/OQni4EB1mrqkjFKeWADeqXpSDBKYM8OtHFyJHJjtmGUeuOK5nUIJxtGj1aPFoNnMJpcF48FRvvH+p0VzclgdOXePbF6394Yuu/+qG9rj/nbd8X89/xYNI/dhVzBKK6KjzwW7ZdeHMMtzdEdEXtf+ZJYMnf0apDG1rZxMfr0E09EWzqYqqWpMV7/0hfGXV/8ZNy/aUd0DwweoEfvuuOO0ZWosQNjHESK0SVNjTHQ0hKLFx8dRjnAaXFrY+zesmnW6tF9u3fFhR0jsaUPQ3qcdBjtHeyL+ppRF89yrDs9Y93H9z4ei165MOafOz9esfIVBUYxGn/n0zfEqpWr4pR1p8Tw0PC0jnVH4KXGplmpRycz1j1Y+P5O8kkEASiDZneC7Jogc2nVspNcJheIEKq1hlDtlpHT646mQNHila1TAo14AtSjxC1DK5AWGOLaeDakQsI6y0gAwJMUSa/rSW4XQZ2tXwJG8GYLnG2hNUzmzNYMQa5lTLdc3Um0iLiB3uPFFRAKSmnlmRYZBqUABIvVhRdeWKzWkE7FqODA2sOglkE2oTjUYezqAMpkdcXN/AgSwEXenhyHW8bXv/71AsCA9e67767Uhbxcpbr88suL1R+ACbgQaOQFTZ7URlsAHMrJfcm3Vijo9uQ6yvROTvbufeITnyjqr8WPuPfff39RX8D/a7/2a4XwsnyeK1jtq9yX1J98aCNo57nWJ10r3PekJYuyeWZ/ky91ljfcJ0Jf2R/Ux/IyBk50jNJG8NL73ve+CsaOFKNa3QlYWacbo8QHX6TRdcmTLSfCKDSjeLD+sq9VbFBOxqj34sHbpGFAy4otE1DyxFBEuoxRAvtlCSoZFRrKF/wwMQOjxOc96VlFhb7xMAp91FHX4SPFKPfzEoeJNyvIYJS8qR//zwaMUv59991XTNBPJoxOpR6tT9b5lr7+acdo9PfHD/TvjprurtFJZnfnITE6WFsbD15wfty+amU8e+H5seQ9745FCxdGU33DgRhlL9yzW2Lvnj2x4mVXRG1zSyxbvjxWrFxZ5Llq3drnYLTh/gfiknvui7rNz0ZzU1Ms6twbZ6xeUeyVO+Wcc2PZvbdHw9h9mepRannu7XdH7YZHC/fDaozWL1ocda95w1FjdGFzXfzqu66MxuGB4pqs2ahHB4ZH4q93DMVnextPKozSRvta+2PkdUuiZ2R0MlSOdadnrPvI7Y+MTrwf669glLKWLV1Wmawfy7Fua9voYZOzRY9OZqw7ZSu2+rlnBs7uB3lVRMbMrn95UGqj6bbAey07Wn3sRMstCK6ydlUHy1K40EACR1cCaXSvgcLA4/Bl2mxtIw8aX+sG6XNagsLIdAoK2yZb+bJF0PQGB9+2jYylIMxXhmTBqvAT8NRdV0GtLHwcXGO1YrIJ0InrIFkrSx70ksY7vQAHjEmZAJkJggck4Gas9Qprkr78MDd5OuDjwwE4CAk355Onq0K48UGfrpSAiHIpS0sPdUPoeH8q9EK/B/bQjx4w4aoWZZDOC6TZe/Sd73yn2DNB/V/72tcW7yjPfE0r3yhg9P93vwZChTp6oIBH0ls+dGndglbi0z6udNiHChOPXsdSx2/q6nUU4iFbb09kjNKvWlBps6PFqMo6Y22qMSqm3EfjCaXEORhGqRt87im9d9xxRzFJvf3224tVVCawnl6IEqKe5I2iBiPkwTdYg8fgOzGqJRXs8RuM2t7EY3VWGYBifP7zn1/BA1jHJRl8TgdGCbQPdcaFk7ZjUMBqsn05WzCaVy5OFoxOtR6N4ZFiH+p0YnRk3544f7gvWutropZ227Mruusaov0QGG3oGYiFjz4emy44Lzj39Mb/+FjMW7Ys1rz8pdExNFjBEOUteNkV0dvXF5uefDJan3429txzf5x25hkFVh65665YuX599Pb3VzDatWB+4eK88vIXxJICowvj8a0744P/9NF4zctfEo+vOy06OSxmy5bo6+mJc88/PxYsWRJLhu6LHbt3x8ZNm6YNo8UVUsPD0dfbU+hO8putenQg4O2hkwqjdX0jUdvaEIMxumJ2sox1wcHHPv4fsf6s00Yn+d2D0dLcMm1jXQ5u2njTphjuHI72uvbjOtadO3dunLp+XbzpbW+IL3/xy8XzE2GsO2UTWwnRfUCACnytVPq7Z796K5z/z+4bMm0WBM7Qs6VLYZPdGbI7he9MT3ytTS6nawXgHb8z6LRg5ZO8eK7FxJUT3VoVbDm9liXrmgWaYFZISKsWuAx462N8g21A+blvqBcMRnz3xil87AuBbLkwG0f121YwFO3FIFnLDXUneFkyKyoeA661i1Ug7+4iPaCzjgCB4Olm5IkgYGWDtIAbqxEuEzCvbiQcIqNC8X4+D3vB8kZZnhJHcNCupVErciHQx/KxXRWICBuECqDC/ZJvngEw3aI9mEAhq/CzXREMuJFQZ9qdiQeTCk+cKyzmY4rJ/SDSU+1G4hUG7j324AyFhYcY8Nu7v050jMJXKJGsUA+GUdpOAT0RRgn5UvJqC/zRYhSamRQyKXVPD8F7X6HrYBhl9ZLn9Dd1Jw/wgiGKSe4VV1xRwah7fG699dZCgcK75KsFVlkhRt03JEYp89JLLy3anvdYqjX+kCdpkQu4B+PqPJ0YhW6tt+QFFqGRCS7H/bOajJI8HIxSJ9JgZXYgUmJ05uvRmrra6Kc6YxOEqcZof1dn/Nf24fjbrvq4v3FO1DXVRG+MxJzW9kNitDtqYt+CeTHISvXQUJz6xFOxoSZi5513jqtH92/aFKtPOy12btkZNTt3x+DYqabdg0Ox8emno2lsD1qBUWQd+9mqMMp9xN+99c7o3rkrFuzcFb2NjbHi8Sfijscej77hoWgbiXjR3v3xzbGDy6YDo3v7B+LOhx6Lmx98LNrmjLpKl3p0dmC0GPutaYw66jBUMyV6dDaMdWmTxcsXxZvf+aZRY1lA83Bcf+0NBV9Mx1h33tx5Ma9+XgwtHComqcdzrFvfUB8/8IM/UMiqu+++K1auXFXU+XD1aG9fbzE2mCl6dMomtjKczEmBFq4LhdYdGdD9ZXa8s3qFde6APHDNlq+8LK7AEOgKF0HgYFC/bq1VAj+7ihCydSkDSmBaDz76gGuJlZZsnTPfasuc+eX6Z3eVbAVUEEG/baOVxs61TXRbwC1Jy0o+0UwG4zfPeSYAFHovfelLizuusNrAUCgY4lNPFBTujVirPDQCumDowrVl377iN2CUJoUi7wAmZZAnH1ZiKBeAy7DQzjNdFnRTgRboZBJMGbynrl6ejSsG7eUJdg7iKU8Ll+46xHOPI++hzePGKQOAMzlAoDCpcK8jtOXj3T1ZzoMOfMbqlm1mvdxnZt9TBz4eZqBwJI/ilLyxvF3xUEkp/LRY5VWRagvoiYpRrZr5EIHxMOpl6rrxVGOUT94PxDdKgfb3DtOpwKjW1eKC+XQ4An12KIx6CBPpUIK6Qr3+9a+Pm2666YBL4eEhPC7AqArYPLiblfJ4njFKmAij7EVCFoAV2pDJLGlUxKQRd+ANWhy0HC1GmZSLDTEqrVrdMRTQX6SdDEZtW1aaicPAWfe1EqMzU48WGB3bZytGm4ZHoqG3L4bmNEwZRplMfrenM5YND8ZAz/7Y3jIneih3cOiQGG1uaozB1WsKGhdcf2Ms6u6JuuaW2IFHyeDgc/TomnXrCoyCC+rf2d1d0HX6OWcfNkbXn39+xR2yf39nvOiJp2KofyDuWb40GhcuiPZHHottXI81duXYjq1bi6uJhsauUjkajO4fjPiPa2+J2vrRAXSpR2cZRp/tjYGrN0ddfV3Uje1EnEiPLl29OFraW+J737hh1o919+3aH49veCLOOf/sYoLXP9AdHQs7Yqhv5IQf63azAltTEzt37oq6uvp44sknYvWZK+K222+NwYGhSevRl1354jj74rPixq/eEsPdo/u9jydGp3TFVkFkoYKyerCZXSdUeIKGQMPL7NnqQzqfVw9MBbd0yMDkJVDcSyBIeObGZQWUG8+zpcu02fKWrXUwB+42xKk+2UsAZtBblsIsu3vwu/C/H2OI6oG2bZktFKbVOu4hAp7cJjPbxjASFh5ASjpPTANs2armBdLsOSA9q0EesQ9YUFJMFNygD6gJWGWx1NAu0ODKCpYnngFEjyK3DRR+WH0AJyBmnwHuS9BBXD4oRQa5Chjaig8ChnKg3aPcqRd1sj2KQcOY/z7lQwfAx+rlCh1p5RnAbB8woP+zP/uzSv9QV9s6C19o0mXUAT6TGOpEOnmSATj5O5nyXlvz020mY8u+U7i7h0JBqiAxjbxyImOUshB4k8EoAyPLURiKUZ6ziuqdpZZFP+jyM1UYVcmRDn6zXSaDUbDnniEOV4O/X/3qVxdYZKL7rne9q7IvJ2PU+3JpAxTikWCU9zwr7uqMiLvuuqty+qOTSfjcyTUT36uvvrpiOT4ajDJBd2LuXbJMRCmP/B5++OHi++///u+LVezJYFR3KtLRXgy2cQEbD6MODPM9gSVGj60eHR4YiJU9/VE7NBRPtX//cLSB4aEYYv/cFOrRnn374tnoj2fmLir6vHEs78lgdF9XZwyDcXjrRZdH52NPxPM2PBK1K1ZE/emnT6hHxegjDzwQi5YvPzqMsqK2fFnctXpVLGlrjaFFi6KF01nvvmcUozt3Rvu+/XHOnffGTaefEu3rT5tyjB5rPVoYJOqYCJcYPRI92tDn6ulIDA4NTojRbdu3xvve/2OFS+3N190SvT29s3qsCw/dd/sDsWvL7mhoaoiNz2yKM08/M4bnxwk/1h0eHo4P/99/jGef3VLQdNlLL44zzj89Pvfvn4vmupZJYTRqIlasWV6c1nzFD1wen/nQVTFvzrzjOtad0lORs4uFwM6WpezmKvgEegYkabRaaJ0T6ObpDD1boHS/MJ7WBC29pKPDC6tqc3PFqsZvL6a2fNMKJAWUg2KX5fntnrlc72xh04LmR3pNn614WZAQtK7Yvlko6MLCb+gGKPrAk846ebS55RJwgdBqo1Aivv7xugZQbzaUkx6g0H6AhHK9w8oDaXjHSYwAhgE0DK1LBHmT3kG57pcC2fuzPEWVQSaAJg+AJS3QjJBxD4/CGmuSLjXQisDQmuNkwGs7aB9cLKw/37Rddj/1HjQvsOejRdDJiXydXWF0feG5fUdaT6olXbY48c49vVp6ddNwX4gWO9LaL5lf5Q++tYzJ7yVGD8Soe3GrMco3rrVi1X1ETM448GEqMUo/qghJdzgYzR/qRFnu2UMJ8kxFVo1RMAM+MVQdLUbJi/bRNVA+8b5pTmWlLtxnCdZol6nEKHQTeI6SdzWE36zeTwaj9qn8Rx62QcaosrHY49jVVZTtCkmJ0WOnR0dqamJTa1MM0xbkjTW/qSnW9g3ERq7EmGKMbuobjjl9PdE/NvmYLEaLFQZ4D5flutpoWLkyWn7uZ2L46aeLOh9Mjz710MOxoK29MLIdDUbR44+2tkZ3XW3s3bsv2vbtj0HoXrUyunt6YueWLXHFAw8Xq9/nbtke3S+8fMoxeiz1KO2ztK0pfvplF8anb3kwntzdE0MjoxPEEqNTi9GBoYGoqf3+BPREGOvyfP1ppxeGFyZl7k890ce6LS0tsX3bjhgZHok161fHJZdfNGrQ7+2L7bt2TBqjAW76++P6q2+K7s6uaGpoOq5j3Sl1RdYSkcElA8tkMrxWnfx/BoGuG4Lcb56bj8/NQ+uu7/yW4V3uzmVrtdJylGl1wMs7LWN5n4OWg5yX5QtY3/ttOwlc6c9lCWbL0a0gu3hYZ5hYoQL9gMYBHnFhPtuToBXPPAkKPYDOR+GmmyFg8748L23O1kHdJQS/ggdAAjRdC7SayeRYtRiUQofHrgNC3UptS5Q81loECM9YnaE/yRthoCDW95/fCB3oxRqGlYp0XrPh4MkJhgKed9RfFwveO3AneLIp7aoAyyfIVh8ElH3/6RdPq82WKuggnRdMQ4N8qiAG/OSZT5QjvQMGLXbVyqXE6IEYdTAhv+QVO09T9Jh+7m39wAc+UKTDQkr/TBVGmTT7v304WYwSFx51oEh6XJDNVx73/tqMUcsEY0eDUWQCq6LF3XRjhgIMALj0glHyYb8vaWhPBgMOnqYDo9RVHkJxThaj0O5ggW9k3HgYpU14br8y2KFMLdeTxSi/PZAlX49RYnRyerSuf6C4x7a7saGY2L6kbzi+W9MfI1ET7f0DxSR3SjHKYS79fVF7uBjlJP/unpjb2xfR2BD7W1vjtuu+U+y9Xb1mzUH1aMOc9qgdHDhqjN55223Re+33oulNr4k2BpMjIwdgtKmlJW6a0xa1HXNj3/KlsTq5zs5GPdo6MhC/8MrLo7GuJt57xQVx04an4tN3PX7YGO3etTtGGHSDxdZRr4ASowdidGh4KJ7duCWWLl8Sa05bE/fcem9Fj54IY926hrr47sjdceq+pbGsffFJM9Z9+N4No+OdFUti/+7OSWO0saExvvwvX4uBwYGor6ufUI8ey7HulE1ss6UpM6lgqxYM+r8LPK0yfCtgdRcTZDlPgpUjnmVm1wuDS9vZDSAD0PywGmgFsSFlTC0MWj0ETaZLq4H5+c66ZUuVnSawpdPfWbGb1vbynW4sXlLthnUAb7u4sdx3tq/l6IZJvtSXerHyQxryJi9WeLBkoZwAJQN9T1QFTFoHPe4coLuvQQsLjM5dYQgAhIKn13rHJmkABOk43ZV0AICBKiBnDx00MaD+5je/Wbx3gzmg5x00Yb2iXvxmAIpAcb+f/aOC1UqqW6oWaycP2c1Fa6dA1Ypkm+pCRNBKpcAq3NPGrl2hzuSna4kKQ8WjwiIP2kYhb3/ZVw4OtPLKJ35nnJQYHaXLAxlUsloBxaqn9xH++q//Ot7//vfHP/3TP1VckKYao1qvDwejKDf6nskiOISveA+/cheeF6mDJT4Zo1h9PVH5aDAKDcgD9ulSFq6VHKQhRrn+B4wS3O9bjVHaeqowCo3ILFdtUdKTxahybiKMyh/SZV705eFglG/yuuSSS+LMM8+Mv/u7vysxeph6dLi+Lvqhpzg8qi6ua2mIl/cMxM3N9THU2hIN06BHjwSjDaedFj1PPhXL3vD6WLpsWezfty/OuPbq2Pb6K6NzeOSgenTJ0qWxeMmSo8bofPbFvfE1sfxgGEVvcLVZS8u4GJ0tepQDun748nOipbG+cKG9/qEn4+p7n4j6+obDwmg/PBsjMb+rN+b1DcSjjaOnGZcYfS5GP/Ovn4utm7dHT9foxOlEGuv+yzc+Hv0dEfs7u+O8cfToTBrr7tm3d0r1aNeu7nh0x2j5h6NHqcvB9OixHutO6XU/2SVBRpW5BYerJj43TrbMwphato2n60UGi4xvPC0vDjyyJUvw67pARwtCV078nTssA1UhlC1vWp58L33ZTYRQbWHzN2m1RNn5CjneM4j0QmXrn900pCPnV1zazsmJY5vFXe7XZUNFI3PxP++8d1KLCEBm3x6MT57uC2JQjUDgNFIYmlNT8e/X759BK3E9PY401Ik9eV78TXxXQbQqYanC4kQeABWavSSbdiAe92lSN/vBEzdpIyxXtIEb0AE+efKefKCVwbgA93RKXS3caC/v0C7UgUEIAok8iavVyNPe7DsFqSAlvYegQIvlalnUCumx59SZcvnf/QXmL7YUMn4Kt7fkSmm+9m2J0QMxqosOQVcX/xdD8CAf7oml311dmSkYza55WHzZ28YgGYXICYvgBUsvSnMqMEo5vEce8P78888vMHEkGNXiLA9NNUZJN5UY1U1NNzP5zFMw7R9xezCMksd1111XDGxKjB6BHsUlsn+gONxmTm9fzB0Yih21NdHb2hJtY4OoGYHRPXuiOR3Ws/mJx+OUBQtj8YoVsW3DI9OiR4tyHn4kOtibt2dPXHTppdGxYMHJoUdHhuOZ3fvj6d374+YntsSm7buKg7saGkax6IqePDEhRjFiNDXF9rnD0bhz9DTbEqPjY3TjE5srE+esR0+Ese6q2sWx56YN8UxHV8x55IF48ylvmnFj3ZG6iHt6H4vldQtj1WzAaO2xHetO2cRWYAmqDBoJFdx55p6Dzwk0rG4kWmAsw3wygP3kpXaCS+2Wrw++hxLwGwuDIFKpZouArhnZBUT6/SgQeOeyfRZ+ue4C1UGedJmnjKa1xLjVViwtWAoYQUsa753VOqJAIB8tcrnf+E0amJt0MCFWJaxIxOE59HtJNNZfmZ4rgbBOQRvxyQc3CwK/tc66cV1m1G0D5W5fCkAtxgzctcR5uhzlCsK8J0qhQR7QZ1+SDtppKw8CIp1lafVRoOq2yQoXv0mP5S0fNS5/qzxII+BJRyBvLVfyE3WBDq1QCgbq48qAd86Nx9fmKz+rFAR/Fg7VYC8xOjFG4emXvOQlhQste3LYG/r5z3++ouBnCkahE8VHPCbeTF45Yh+sMsGFj6YDo2DsHe94R6G4yZc6HS5GeUd8Vo+gHUU80zFqf4lR2hB8ilHK4+R47vg9GEbFASu2YqjE6OFhtKa3N87oG4wNzQ3RNTIca4ZH4v6WhmhsappRGJ2/b280NTZE41evjqfPPCNWP+950bB6VcxfuizmPLtl2vTokqWLo/kTX4i+lqbYzSniHR0nhx4dibjmoY0VjDY0dh6A0f7unliwfXd0rlpW4c/xMDoyCJ8ORce+rsoe0hKjJ99Yd82qNTG3fe6MHevy7pru22JoUV2s3dEwK/To0DEe606pK7IWJIKAcB+bgJGxslVKouxwLVsC1mCFiCdQbMQsUHJe5k2D+1sGd1O3h7CYXkBnK5TWIpfypcV9AnaGriK5g8xbOnUPKRp5zAKW9x/Yhi7j666hS47uBbq3uc9NIVAI97Ere7TWaRFyn57WQgddCg+syJzyRlqYmhUGrbaAVbcBrDpa62RYmJw4lElebvB34zvvsHwhCAAqg2SYnjpq1RJQfHsPJ0CTwclLFxrS2A68x9pFXVitEli0jfePaQESSNDBM907KdOT3nSZonyeu5mdkIW8m/Y9PICP7SsmtNRRBuVSH0+c1urlMfXyiX1pnuZlGvLMis0+zPymQC8xemiMUg9WKn7pl34pPv3pT8dXv/rV4pl7SWYKRvkfJYzFE3zBNyhETnLGxXW6MEoejzzySHHlAac3Ork+HIzSL7YVFm/dxmYzRukz2j4r44xR3fyo3wUXXFC4i2P1LzF6+BiN5uZo7+uMK7r64+6mutjQ3hIjdd93BZ0pGO1va40VF10SO2+7NTpWrYyuZ5+NlZ/7aHzigsvjtPMvmDaM1g2PxJ6mhmjt7Yv7br0tlp9xeqlHufJkTnvs5wqmocHo7+Lgo9rnYHS4sysaBgdjQf9Q7G2sj8U9ozq1xGg51p1pY136ZcX+ObGtviee2PxkrJ+/dtZjtGaKx7pTNrHVCiAYtbZoJcggIkigQQtYtm5pdZF4ACswrZxMbkNoMTBtBrwWKctRqOiKUe3mISMJRmjO/twCNFuqrAvPLEuriICSPt7BGF5f4UZq4gEYBYu08L+HlmhJydY68oSxeQ5QdA2gTeh4yoGxyN/N3O57IR0rKYCcD1Yq8sNv334izzPOOKMAqQC3fcwH6xEWLQIMjPBwEJxPV6NsLFzko7VHAFpX8qZ9WEGjPRAWDN4ZFHsthH3uibAKNOJSB11NEIAKTYWcliQFFzTqUkE8AaiVUCGjEnNvhe8V5J7WJxDtb/lfRUjQpVE+pi5aNDMusjXTts+KTuxlhVptxSoxenCMfvSjH630E3wGTzOZE6MOUKzX8cAoh054xQ0TWq2tDmamA6PUE9nwpS99qVjVBmu0i8rlcDEKbQwEmCTPBowSV4s7z6oxmgdveQ+TZVEH2oZBFLTRNlmJlxidPEbvmtMaxODqn8V9/cUVP3vHrrcQo3u3bos5ixcdN4yuuuCC6Fi4MIZf+MLY+vCDUYPMKPYJNk8rRofvfSB2XHxezHvo0Rj5zvWxfX5HpS1PdD1aYBTX0337o23RwudgtBFXUFZxd+8pDoXiKiYOiqpray3c24fAwby5sXWMpodra6K2xGg51p2hY93VfasL2vYv3T9r9GjvMRzrTrkrskQUJ/yNLY9n64xxsjAQvBmEgk9AKiQEcI5D4+Syc34OOmyAvH+HtJ64RxyP587xMzjtVAWPnU7IjZutcj63DQSzbaZlQ8uTwgHAySzZakV8yiauJ4B6eqDvtajQLrqKCGL3f2S3DvcX8oHBHcjxm8EYg1BWswCbgtCTSHV3IQ11AGScvJiFCoNxLE7QpFUNIaDbhHdDUlfvyeQIdOJRju+lT+uRh+ggkKDFO8FwyeQ5ZUOLQp6yHVB6UJACi4/gVbjZdlqws1uGwNTFQyGrW5HuJwrjvI+Gb/KkLlrG+PaUTC15Aj3vY9EiLH+qQBQMfouXEqOTx6gDCPv6zW9+c3zkIx+pKE36zL4/HhhVcaHsSEPerNyyssIqLjw4HRjlGQqXOmKFRh5QPxQ7ZRwJRvk9WzAKTa4ITIRR93mx15k+IS3feYAgTbp6lhg9fIxycFSwz4t61wzHuf3DceuY26kYbRgr/3hhdMl3r41zl7XHF5ecEZdufDzuaeuIrze0RX17+7RidGDdmhjs6Y3OdauicX9XNNTXx4a77oplp512wuvRTq5A6e6JgRiJ5sRXGaOcVt27a3fU79gdg3PaonlomFlSDLY0w3gVfismrm3fx1iJ0XKsO1PHurNJj/Ydw7HulLoiQ5gFC2afC/bx/KStlA3DM5nI+Bn4CohqEAtEhYlgy/sGtPxIH51FHC0XGZx2klas3FkKAF0fCORLJ3mCmYztgNl2ydYM6aYzYQCByDM2srMxHcZ0T4GbrAUSTCZzMpDiua4GuhGRl5dHK3xtCzeNVwst200gKJjIB5qgkc3p5MMANwttQMfpcrpN8J40XnTNShO0IBAYCHrPGoJC2l2VQtBgZQL05EUdyZd0PCcOFi3ahmdYuagT71atWlUISlaXsI7Rx8Sjv3SL1OKE4PQUTE9DtT4E2sL7xxTm+ch88uSdQpLf0OEJdbahZfvbNje/zJ8E+awAZNX9clkZZXCrjKSvxOjkMeogglN/sYISB96DPtrzeGIUWtlTy8mJPEeBWmfvlJsujPIcKzRKlG/yBq/kNZMxSts6sYTOQ2E072/LmPX6gYNhFHpoM36Tp9goMTqFGE13ge5saIjrG4eifk57UU8xOnfhguOH0f37Y83uvdGytKW4b/d7q9cXp/M+M3durGlvn16Mrl59AEap56nnnz87MLpte4zMmztpjA709kZ9U1MFow1giRXJQ2C0ft7cqF1QF3XcAw6vdXbF4Mj3D6gpMVqOdcuxbsOsH+tO+cQ2W4gEibNtG0+Q5mVkO8F3WhBkbK1TLkdrKcj5ZCuVAM+uFqSxM0yju4cMl/PTAia482BH2nR9ME9BYTppJvDezrbTtC4RdM+A0aGH/6XLgwkApkzr0r5CgOB9nLpTUKYn42VForWEj+4T1fdfUqZ7GgAZ4IEerFm2r6fMQoeHTwgaffex1lAn76+SMfkGDKTxTjHvqUNA8ExBDE3G0/qju4kXnHMqbMVqvmRJpR4IS/qDdqZM8tE1Q7qJS95MHLDcUb7AsZ6sWqkk7Et+U777D3Q3ob6UCY3UwT6ST+UBgaoFzD4R+CoGeV1LmoJYN5sMei1zYrHE6HMxSj/lNsguUPADceAz0maMUmfKnCxG3VNjuzrAOBKM8hveJC08DB7JEx47lhiF3ykDpT3TMUqfvO1tb4urrrrqkBj1AJfsusX7fA/tZDDK/wwesKiTJ/FKjB4BRnGvHRyKqKt9DkZbcB9lgtPeVqzgHi1G923fGnPqa2P/SG1E7VFgtLExntm/N9bXRrRv3xRtp5xZYvRQGN26Ld66Y3d8aX7HYWG0c+++gjcGWC3atae4k5eemQxGCwx1dUdTx7yoGRgts8RoOdYtx7ojJ8RYd8omtlqeZHp+00D4stMRHkBCY8j8AsgG9Bl55H1LWm4EYxYmeZYvGG1ILWBacvnmme4OBE/+0kolsPPAKANd2lySdwM57oAOfqTNOmm5yi6P5OGR21osvKOLeFqPfO7pawooGFbhqXsE3+RrXUijVQ9aYWKeUybPvY8L8EgvIKFNECowaBYUHixxxRVXFMeZu3eM7/Xr1xd3d3FEOXEANoCRuRVsusBQpgKdPGhnQOcl1rpp2P9afogHjYILQUC92G8gD0grHyxjuGtgydKtRYEnuGxj4lIP8iKtPKirBN8qJGihfVVogkuepT9oZ/LlnelUDlpYs6KgPxRqChrj5nqJEwWA+VcD3LqVGP0+RnUXfe973xv/+I//WPBhNUaZkDhgoA8zRqVVjKJIPP1vPIzyreIhLs+OBqNYZ1mRwRpMniqqEqPjY5QL71Xylj0RRuETBgwqaMqlHpQDT4iXQ2GUb8rlUCmt2FqwS4weGqP94Km7J17QPxw3tTTEQGPrczDaGSNR394W9fBhfcMBGGWi25gwumvrtugbHJgQo6fV9sU71i+Nha2N8eDO/fHhJ48Oo88uWhT19SPx6v7O+G5TYyxYOIrVEqPjY/Sy7t5oTrx7MIz2PPxo9La3RseK5ZVDdmp27o6a/oEYHOujyWAUl+1l+7tjG4NsoNAwSk+J0XKsW2K0ZtaPdadsYmsj+j+VhME42ITOpwIM7KyAlh4rRRBgzvh9r8XKOIJSoeJytYLJfQjue9K3X0tGbqCcnxYDv21U4merg/sDqB+Mx4pMtpBpldAilgc81oH4MLS+9lhQtFboY06wXO/nIq4uBPzmoxVMoPPeS6HN0/r7XrBo9VIgMRADdPQRTM/eAMHA4I4N9cTj8uhvf/vblTpRBu2AcGcfHmDmN0wPiKCHby0sCANPoOObcqEPgPM/ceEb3C0oE97hQ73hKfb/3HTTTUVayoJW+oP/8/1g0O9pcfzPh0mBQornxHWPAvXA1dM9G3zkPQJpPc0VevjfwxbkE5WHbZxdhlwppD2hJSs1wK67SDWI84qf/QndYsdvgxbcEqMHYpRyUCgoZ66v+bu/+7sDMEq6d7/73YWiuvPOOw/AqKsu5CtGzz777IJXOUV5PIx6+IXKjjrxfaQYJWjBpd/os5MBo9CDG5YnS9I/k8Eo6W644YbKqutEGCUP90p5YAV9Q/s4yLDvoOucc86J+++//wBlL0b5wBfwme7iyoESo5PAKHcR19fF1sGRuLBnIG5q6I+asRWJgt6BgbikZzD29g3ErpXLo33OnApGa/v6Yw66NO3VGn70iWjYuTsGnnfhuBhd2toYC1pGaVk5pzXmth4dRkf6emJX/1DcfPblsXjJ0pMGo0eqR4ef2Rw3zZ8XrUuXHhSjPUxo5rRGS0dH5SqT4l7U5UsLY0bd2CA8+vpjX3d3NG/fHX3LF4+L0Zr6uujoH4zuhoHobm4oDpaCx0qMlmPdExmjQ9Czd1fc/9D9h6VHZ9tYd8omtpmxrTSVoeP4rVUAZqWjBYMgkPA8y9clI7t9uLE6r5wQFBAwiFYarUpahEinwhIY2e2MPN1wLviLhhgDlfToTujR2lqU7DitCdnqZlo31CuEABYAYRVJkNJmWqukRQuVy/DSr4UKRvG99OqeQVpo1MJmvh4BbzvqFqALBPGhB1p1m4BmVjUc4BMfhmcViU3wMLqnuMG4XkLPIA9AAibyVhnozqBVS0secfngLgL9/E9ZCAfqQjrv3MOKBa3wG/2vEMUdkHSscvFeVxLKcmO6wKRs3C8AsG4YDmblb+h9y1veEi960YuKfP/jP/6j6CtX7LJl0bTQ4sl0usVAJ+WYL3QIYnklux6pSLV80U/UPyu9rKjsl2qwHwyj8jGCkkCbKlSywpqNGIVH4FmClvbnPe95FVfeD33oQ5V2/9mf/dniGZMh+UKMkpcuVO7hYXLDflyVWDVGoRU8oJx4Bk96euuRYlRe0eKeMUqeX/nKVwpFS5nSM9sx6sX3KHB+a3k/GEaxtFM+pzk7KJoIo66SQCvtSD0dKORrEf7kT/4kNmzYUORpH2WMEqjXH/3RH8Xll19eHCaCEWUqMFqtRxl81Q4NxFDMfoxmPVrcS9vXF2uGRmLeSETN3u64aV5E7RgvP5+rWGpq45n21mis0qNz58xlqBPP3v9A1M+dM6qH16yM7tammDM2cKrG6M1cH3T3lvjdS1fH5r6hmL9gQTS3HQVG6cehmqjlPsjFS0s9ejCM3nRT7Lv5tvjKkkVRPzYZOyhGMSx1dsacsWtLoHVg1+5oWrRwFINDQ3Huw0/GXu4FbW+K3u6eqG/8vssuYah/IEZqauKBFQtj3rZd0cpBP3PbpkyP7u7cG/3r6mLomboY2Nhzwox1i5W/wb5Yt35tPHTfwyf0WJc8r7392tg7vCfm9syLupHRCfxsx2hta0286adfG7d+7c5C/kxGj87Gse6UuiILmAw0XArysrhAphGsVN5vICjypmJdTvLSeHaD0DIDQ+qSkC1XuljYwQIOxnCgwMeN1IJIS5sWMoEhKOgwl9OlT2Gki4dL8lqj7BTiQi8MCeABBLRwYA3vYR4AIojdyM43achT0GAh5beHuWhN8xQzBYX0y1T8n/c6aFli8KgwBcgADsCQD4M6nkMb7YpVh3feeUeb0o7kxTsEB8DQbQa6tDLqJqPw0lWTCYd9ptBASeomar+7j80JhHXif+JjaSMN+4wAKvlrHSUP2lJhyHd2H+KdViieewreK17xiqKtsF7ijnLttdcewKvUyXanLayrrhi0tUInH3hg/XnHh/az3+TjzFMqVK1ZKgSVC/xQbdk6GEbJ53Wve11BM4qH9NT5nnvuOQB7sw2jCFbdd8hP1yUV46233looW3ie5/D3unXr4rzzzivuaxWj0Aw/g1NcTOkjaBaj3oXHhJJ2yxjlOZZR6kJZKtwjwain7KocyTNjlLradrgkQS+f2YxRB03KVVdDDoVRaGRyy8Efjz322KQwaj29n0/3NHH4G7/xG8Wk9f3vf3/8/u//frEq5eSWz2tf+9q4/fbbC5kMn0wlRrMerevrjp+5YHW86tTl8V++clts6x08ofToYNREXTHYromn62ujvbc/+sb2ym2vrYkFIxFLevujc+7cA/Qoff3oPfdG+6qVMTjGx8V+tXVrK4O7px99NBatWPEcjP72rU9HfWt7rD3l6DDavWNbdNc3Rve998X2+sbnYLTUowmjK1fGnStWxLptO+KJhQsnp0fHXG3FKHuiKxOg9va4Y/mCuGTL7ujY1xN3MrFaND9iaLhYpeWan4Ubt8butqbobWuN7R2cQjsQ9OpUYDRqa6L5rSuitb0x+gb6IzZ2nhBj3WIiNa81fuk3fyE+/R+fjUcfeuyIx7qNLY3R1DC6b3amjnV39G6PVa9cEXPq2qKnuyvirtpYs3qW69GhwTj94vVB7+7YtDOit+aEHetO2cTWysrQfLJlpNqtguAM3f0BDl5cjTBfmUEQeSCHS9B2jlYlG5I8tUwJcH36+e3R4VoH/F8LvQBXmFGGp2OSBwwFc8LM1o10CjvyskPzylfRuOkoa10yvOvQjrV9jAvDMenQMmrb6IYhHZTtaXMIJAWwm+Pda5EtKeTDANg6QBNMR/3sM5QxQISJsVQBZPJygzoWK2jzXk396LEMaW3L1zKQh1ZOaNdCqMsmQsbDcjzcwYGul1kzkIGmhx56qKjDC1/4woIG3jlgYRUSwUMcgsJQF0MPJVCxaAXLPKrV0ZPsFCj2u64mtLdWUV0wFO68z4ctyJve42Y/6aIkj6vQdJnkt/RKm9ZcMVSNyUNhVPcbrXL0Id+0G8/F02zDKPWRfmimnuSDBfJVr3pVgSkmsihMeJJL2q+//vrClVTcEeAl97B84hOfKGiAPzNG6RMUUDVGiUN7TgVG6Q/7RcWRMeq1PLSDd+sx2T4cjJIHdMwUjEKffeieo2qMkh/GAxT77/3e78VP//RPVy6KZ/I5GYxCG33syZxi1AM7HPQxuVWZUjZ0n3/++cXgDBfls846q/ifSfW9995bGbQcLUaVEeT3o6ctiVefuqyI96pTlsanHtk6azE6nh6tm9Metw8Oxen9Q9GMG+bQUDzF9RJDQ/F0x5x4Zng4lvQNPEePbnzyqdj9wMOxo705mtvanqNH6bfla9eOi9G2hVOD0YVz5sRDQwNR+5KXRsc4GC31aO/3J1J9/dH39rfGU9/+9qQw2o1MW7Mm9o7RRJo5p59W0aPFAHnhgriHFV4K7u2LEQbJXV3R0TMQvU0NMX9gKObt3B/de7tjV3ND7GqsK7wE2KNbTAbg6zGcHC5GB9pGIrZ1RWzdH70b9lDxE2Ksi/x9+/veGsPD37966HDHuqN6dHcsWj8/ent645HHHomaqCm8LGbaWHfb09ui+cnmmL96Xjx96zOxsmbVYetRJmwzSo82NsWG2x+NTRs2R01fbfQPjK9HG5saY8myJXHPfXfHaaesL/KbbWPdKZvYSqSb37MQEHy5krp+2RC+F3AZGNXPBZ+CgfRODG0IGZhvLTIunWsNM28bVKuabi/u0eJ3dpFwgFOcpogrTGIMXYuyv7hlZEFoO+h6wMoYDKywsSMVTMQFROSFkMmbsV0Bp2zdI1R8CsfsppHb33YBGPyP+6KukzAn/1M/0nmPJ+V7Wqz7aXSrYeBJPFaLdEmSBieF0EJfIWyhG/DzvxYghAJxoUkQAHxokL8ErINOr0GBXq1VCCL3OTLgVYBDN+XlAxfcF2DbyD/5cAYEz0c/+tF4+9vfXqz03XHHHZU9Iu49sJ9pO/JBQPOMvqM9PARAgWze7itRcPi//K3gz4pOwGf+lbcyViaDUcpkhclBOP2CEKWvi31M6Sj82YRRTw7M+NSFmEmHbZLbjVVVBp/wo2XAS1jkv/nNbxbPPL3wWGMUfLEPByU5HkaZpEM3rlIMmMHHZDFKebSLigp6ZgpGUa4OfPIEToxSFul5x4CClQHSIFddFTkURl01oxwt78TJGHUPHOWZBwMOXdf5DY/86I/+aLEvy9Ua7661D7Kb/5Ho0X+9/5m49dmd8a7z1saXHt82qzE6kR7dOW9ObB+TRzVcYcsf31y7NTgUuzvmRWuVHuVv36KOaBkbzB8PPTo8b040vfrKaB67C7bUoxPr0Q0bnyn0aC3utWN672AYXX/aabF9x47o37sv9o3d1bls7ZrnYDTGVsGa5kUMb98Rrb0D0b12RQz19kXTns7YMrct1u3piu3z2qJj8cJiFbgoET3Q2xfDff1R09x02Bht6qmLvm9sHR0T8GysTWb7WBc++sInr4p3vvftcdsNtx/RWJcyLn/bpTF/yfzRyeX5q+Iz//cLlZW8mTTWXb18TbQ80xqP3fVkNIw0xNz1cw9Lj27Y9HA0rW6MgcdGeWWmYDT6a6I/XW9UjVHi/ewv/HQxcadu9z9wX+zds2/WjXWn1BVZcOUlYpeRC2EzRpiD52yhYjBJZzNg0+ddgLtUb0X0p84CwLJtIJnPzvMS6GqBYTm+U4hIP7TLYA4cBFW2SDmIzo1tXRUA/k++Ws4YSOU7KLVC8RuGKVybursLBraD9dfXDUWXCAFE8FJm83ayTLkCiP8dwFIfhbR+/zAnli2ekw/9woDxtttuK/K89NJLCyZlIJmFKcCynuR/wQUXFCCkDAYw0m4fsbrBb/LS0kNZCALoBjDGpw3IQ4AxgGeVjEkY9PLbgMVPReTGe/dzZUVjf9mGtB3ALvawpYMI4APcUP7sz/6scgm37ee+AvKQbvZxsnrD6XNMGrGiue/FfQnyJ+3rYFn+yP2hABFP8ppuklozPQAh4/BwMKoSoq644ppmNmPUawOyoDRv9kCefvrpxWSEOPQVSsOLyqHPO/PEJeldnTjWGJUm+A/coQRxm67GKHxBnkx0J4tRlJf3EkKb1yHMBIzaFhmj5Em9HFyhUKGTfDBMcPiXk3QHcYfCKPj2FOXMTxNhFBo5QEQMMmhnb+1f/MVfVNzq3G8kRj158kgxWuC7ri4e3NsXv33d6P7uuhNQj5p3x/6uWDQ4FI9wyA+Y6+yJ/R1zon3scJmZpkfZ/1sYB++8JR65565oPOe8OPf8809KPdoxd27s3rd/Unq0a+eumLtk8aExumFDzFu+LAZ37qzQdTCMNqxYHj3ze9i0Go2trdHf1hrLhobjsVNWRjMrkBirukcNlcMNDdHU0XHAybNHqkfFxIky1n3kgUfjD3/7j2Og//sTzcMa6+7YHn29/bFz267KZHvX1l0x0hEzdqzbddvh69G77r0rFryoI4ZHhuOJh5+syP+ZqkdXpLEu7z/58U/FL/3KL8WWLVvjk5/4VNE+s22sO2UT27yBV2uPFhRdKyhcwSboeE4cXLkYYNJh11xzTfGdZ/DZfUIQZ0BpsSZQni4LPtPfPPtx60IjmLViWAcby7rpblFtZdN/X6GTBVX+zpYzrfsCxFUAPgCK1ZYssGRG81Nxu2qkQIRB84l17nexD6wH7xASee+Bm+cFf+HmM2dO5Uhz2wfAAFCOO9cShosm4MeaRHm4dNInDI7pS+vrCgbAI0/Kc1M9ZWpd0t0G4PHMazewZJEPZTKYYdKR3TAQFLQB7af/P8Dkf/c1UAfLoU0BoMeba7XSRUSlJIhJR5muHhFfC7zCWIsnQoiT7niGWyL1Jr0HGmihVEFQFnQ6eNXipvLyZD/Lqg7kKz+7L/FoMCr2xsPo1772tUr/zXSM8oEPx8MoVlhcWKHtd37nd4rfH/7whw/AqC5KYoR84Ed4TNqOFUb5pjwUGRM5r6fxUL6DYdSDweAhBlectJgxCj6K/Y1j1mhomIkYpQ2gF4VMPGUWChN6cCemTH6LUdrKQyiUqwws6fuXvvSlRdyMUfnNMg+GURU1NH7qU5+q7KeiHhdeeGGxaux+QLFcYnTyenRvQ33sqq2JhuGReNWuzthdMxK3ja16TUaPHg+MDg4MxKnbt0RHZ298a25HtL/whZPCKIPr2Ls32hsbY/l55z0Ho7NFjxZ90NsTzUuWxNDQqIeCA1X1qJN0MdrQ2RW1y5ZOWo8eNkbHJn27z1lf/OaYsc59+6N90+aoWbKo2H87HRg9Uca6xYpwbX0M1gwd0Vi3f7A/vvmf34nB3sGCf5TLs22sC0bBCONdJplsXcoY7YnumNPQFn37+mLh3EUzVo/2TzDWfeD+B+Jzn/lcPPTgw9Hd1X0ARqvHuoWBo244+kZ6izFJtR49XmPdKXVFhnDdEnIFZG4FlaCAMN7zTWfyQdhRITdO8948JV5LjKDL1jDieyWEFnNdKvQnFywOinhPo+pKoKCybH267YTsIkA8feKNa12zu4aCi/8VSLaRnZcFCvljkdDaQyAvVxP4H4aGZidauNIBLq0cMJZ7ClUqWjsEGEHgAy7e0Q8An9UswIGrBYBBwbCKB40MHmFkgOZ9ndDtSg/18Zh2LEuk8cS0woo61jdeJK8FiLygWSsRE2UOfoFeffbdB2c5umeR7od+6IeKVRNchbO7KN/UkTZVgGrJKpTq2B4Q+YR6wYPWQT7SGmq/uYpG8DAH6kAbEgcXRYSSZVCeLimkpRz7QcBqxdLVyD5SmOj2IW0qTZW8/VwtEKYKo5wCjFuuynI2Y5T/sTRSp2984xvxnve8p5jsYJgRo7S17sfQp2KFRiZHKGddw6Ybo8SFHtqfvF1pdU8KE1Z+w4sZo5QPji655JLif9Jn1yIwCr+rTFDe8PFEGCUNfA0+jzVGWeVxVZm4tD31YhWItsE1GD6FpmLPUGNjxf2JdmHwoYs97XDjjTcW7Xw0GNVtnbp6tRDPce0WR5RNmzlImE6MIqdfeNklcc23vl0ZwMxWjEZDQyzcsy92trXEwwNd8fzBmti7vzs2z5lzSD3K97YtW6PriadiwTlnHhOMtjY2RfvcufH4pc+PS2+8Ps556Uvj/q9dHS233xbPXP6iWLZyZdxx663RsXDhc/TolmeeiZd/59qo+cY1sXPBwui79LIYHqvT4epR0uzGHXrt2mOO0eHBgbjy+RfFjU9sLu4RHqiJmL9jd9ScuraST/Mzm2PktHUVjI6cum50hX6a9Oh4GG1e3BSnrl4UD2/fHUtqhmJdbcTV++OYYPRkG+tyYFShR+sO1KOzaawLD27dviXOvPD02D+wJ7Y+s/05Y919Dfti4HuDMdw7HGsXrj2oHp2JY92Wlta48fqbChdtvE8mGuvu79ofV7zh8jj9nNOie29v5UqimTDWnbKJrVYPAVgNGMEqKCTE/z1EQQuMQjt3ilY0KmTDmU92O8j7PCgvW2ZkGu/T0mUvW8W0qFCGwNZaJuj8303nCgHrn0Fbba3g4yCVMuh4j+m2o2BK4kGrzFlRGmPWDZjdQbe++6aDDt4LdGkgeN1APi1PBtPtEkYnX8CGENHCiuUp1400vANg5KkwYPDoSbMEhb4+95TJexWF/Wv9oZX6skGeZ7SPzI7wIQ8Vla4cABFa3a/lxdv0MWVRjpv8vZ9SPqMdKMPLqxFQTlZUDLSxA1aEUXHC35ig0XpEfE/Xwx2SNJ7wpwtKZSVi7KRelZFKj0E67UR6hTblkq8Hb+j+4h4ZeSVbWO3vqcQowpnBuntftBbOVozqIkO9cCv64he/WLT7oTDKB2WIxZZTcL3Y/VhgFH5SWdMX8Ax8QjzewTu6ntnO9B3K2fpDLxgFO7mf4WnSw/8Hwyg006ac4n7llVceM4wqn7CWw4PeOYs7MO2NkQEaPITP0xozRt2HRzraHxxOB0YZkCBLGCRhcKDen/zkJ48JRtubm+KdP/gD8cbXvDJ++/f+MHbt2TurMRpMfgYGY299fdwbQ7G9vu7QGO3ri+3X3RhNPX0x3NJ4zDBaMzIcO7Zvj337u6Kvpy8eue66WL9jW2xee0q0jd1d2UMbpz156tEurkLs3B+1eIbs2xe7Tj3tAIwejh7l/dp5zdE62F24Ch5LjK5aND9ue2pz7EBP1NVGXW1t7F26qNgTTRsXk71zzyrqMR5Gj5Ue7Rjui3ddfEHE4pboeerZ6Nu0Pa4eaZp2jJZj3dk51t2/f1+85+feVazu19bWxN333B0jQ3HAWLevqz8Wrlg0qkf3PjnrxrrDw8OV9jzYWLd9flucce76gq5rP/vdWL50+YwZ607ZxDbvBZDxbUzdJzLQFdAQClhYvmZgyTsYSpDYGHmpvLpC/Pa6DWf0xFdwVDORgkArPvlqqWIQov85QcArBExfuGWM7UXMLg5aNXieLWbZhUTfc11NtJxp4VDQQDPMy28vdYYpKUvXSusn08HM0K9LRrbw6NdOe5Oe/BASgoPyOCnWA1Q8ejyfdIcLhJZCwF9YqFtbi0Gc/edqFs+1iFEGAkTBo1VNCw5pfKcQJU/2ySmQSA9AeKfS8/Q54up6QztyOmnhFjK2t1LLlMeZI+gVirzzbjUHUk4O+Mh3Dii0WL33ve8tBqwf+9jHirbQjY40lO2BAQgP+pH2oS14774Q+QraqRdX7uAaieWOPHGNVbnJpwoo+Zk2oC10y9CNp9qKNRUYZSLDHlT7iXro5jNbMUpbQwv9yYnH8BntaT08HTJjVKUJX9PX9PGxwChtwCBV6yZ85YDKvkJBV2OU9NCIkuM3BihWK8FCxigKZjIYpTz6gf6nzVj1PhRGcef6t3/7t2IfzpFi1Dv9VNjiwHiHwijveC4v0EbgcjIYddA1WYxSd65MoB4OPN/0pjfFVVddNe0YfdkLn1e4gM6fNy/e/PrXxr994tOzGqN754ze13lZ1764Z05LdNfVxfykR/dzSuqYq6AYHWLwz2Swvi6WX35Z5RqRacdoTcTzn//8uH9wIB5buTrW33Rjsd9u8LwLDopRyty+b198fTji1P7e2NrXH489+mhxZ+uR6FHacWvfSLz/RafEl6/5arQvXXFM9Gh/f1+888WXxL98787RwW13T9S2j55SO9P0aPtAf2z7/LWxfzfumXXR0Fgfr+/aE1fNmxM9VYchlWPdcqy7aOmiGBoeiv7u0cPQHnro4agZGd0GcyR69EjGuhuf3Rh9DT2Fi/TxGuv29PTE/AXz4uZrb4vH73kqhgeHY7B/cFIY5RDABYvnT+tYd8omtk5mskUruyhoKaKiWsvpbFdM6Eg3MLssbWNQMe9v9GNHZJcFZ/cCRisL8WWs7D4ioBQ6/iYoLLKVIe9r4LnuGYWf+djyOEwAM3nCmp2jgPP4b+LKNO7FcN8M8aRD1wn3nJiHFhkPOdD/P19JQ9AS412Buji4SkU9YEQULUzJChT/kx7g5H0s9M99991X0Mm9Vuwd8wJo9zVBjzSzBw7hCdApi37Sd94T69xr4cBcIUOAbspjZUwG9rQ8T+1lZQbrFYIEV0ROjNWil/ckqDxoJzfk83HvG2Bh7wv98bnPfa4yMLDvtJLaJxzYw4f2oTz5wz7SdUJlQJnQYl+pqKwL6ajbW9/61uI3bU8bUg/pkJ/4DQ0qKuKgDHTLkUerwT5VGIU+hR88pQvMbMWoZdKPTNBYgc0YdZKrS5H54cJKmVgzjxVGKY/VSlyQ2V8LBh1s8I3SGg+juOfyrWusE1Pa4kgx6mCHiRS0HQyjKEVcvWmDf/7nf473ve99h41RBywvf/nLC2VIW1FHDuFRzmbeYF/eeBh1rxHBlS/6+GAY5X/kA0Yd5BqDnkNhlDTwmW5YKHuCNE4nRh995JFYvmRJnHPWGbFpy5YTAqM1rORgzOnti22LFh6AUXh3ZGD0UJMKRpGRF50bvWOumscKo3VPPxVr162L88HoQw/Fw/X1seZb34i5998Te1/1mlh4yqkT6tH6pqbYcPoZcT2D1sbGWDB2+NWRYrS+ri6e2bE7dm7dHA0dC6ddj0LbW179itj56MPRi5fArj2xZH9X7C5cfweids6cCm9wdcw5Z515SD061Nsbc3ZuiV4MdGNYmio9ytS0a19f9PYNxvyO1uhYtSAG7numcJ2eboyWY93ZN9bt7eqLu+64J9aetSr+5QMfjZ1b2eO64JiNddGjc1e0x7I1i+P+x+6NM9acddzGupsefTZ2PL2riDfZse5wzXD0n9cUr3796+PsjrMnpUePZKw7ZRNbMlaZQ5SzaK1BDqactTtYyK5BNqyECtbsy29DmbdCRusZDK1A0E1C6wTBBqOT3btgnnQ4TJ1P2nTwlhuXvMmPsrTw6ALifWEwY85f4QTTM/jUVYQy3e+WhZMWOX7rToJVhvh8YBw3Z5OnJ7lZd9PLdDKWgkKrFVYmVhFYBQJQ2YUEAcF+Pd5RPoIFwaAlh8E1gzWee1WRLlDEAYQwLPRCj32A64MWO11TtMhlCxffHnEOT2gpJW/opz2IAw3kh8Xny1/+clFPBBPlI2yog+44HtmuxYz/eY5gwoLHwJ+yAb2ua/SzFko+1IkJkO6c0K/wVdh6wh3lMAFxdYh4rvgpjOV9PpwmxwAD+rP7ih/aS1cay4RfHaDrxiPfTgdGiUN78VzFOtswKiaJT3/+5E/+ZDFZ4iAI99SQHiEND9EXKqOMUSf5xwqj8FI+1h+FhxsuuCRMhFHq8K1vfaug3xNk+T4ajBLsf69QOBhG7dvvfe97lUEw5fN9yy23VA4SqcYoCl03NFZAUbLQR9ng1T4Qo/IhffeVr3ylUOJilLqKRfqGCT9tw+SctpsIo8RhsA99TMzB/6EwSv7gGeWN8YNyOSyGMN0Y5fdffPDDxSpUT2/frMRo1qPR1x8v2NsdO+tqY9PC+bFs6ZIKRnc89XQs4F7FocEYGRucZ4y2trUdU4w+8eij0dM9eujKlr/4i5j3+BNxZ0tLdLz55VHX0zspPYrrdd+YW+LRYJTh3kdufCCWz583KYxOpEdbmpvjpm9+M5aedtq4GK3t3huNLW3R3toaC5aviJo1p0b/d2+NtrlzYmDZkmhLd1SK0ZfMb45XLRyJ2775tVh6xjnj6lH65l21nXFac11c8/Bd8dSK06ZUj/YM98eGhvpoaoyo3b43OmtG4pvkO8ZH043R2T7WLfKrq4na+tpoqPn+FTIn8lj3+m/fGHWrXxg797AvFffp7cd0rLvijNEtRYvWLoiPf/zjxV3Ax3qs244e7a0/7LFu54KhaDq1Le7YsyHW1Y3eDTwdY90pndgKaK1LBN0Y/DizzvsS8oDRhoVQTwDV+qTlRyuSABXolqlwk7ldTbTxdVdRsFQfxqBLg+Xp3qEw40N8Bwu6XMg8ChUZmI+WPTqF53RydpHQAmdwHwpxsVBIE3TAnJRFHsTjW6uaVitdULSCkZeKwnrTHgz68HPXDUULl64ZMNLXv/714hQ/8qbdPHgB+hkYegw7A2wEFwNKT2pl4E2diUN+to0bwvkf4Wf/E8gbAYLw0jWJyQaDQ/dIEMhTP34H6pSvG4vCDxoIKDryJg3v8oFAKin2wHFwDgIO10kOEspuMx4CcO2118anP/3pijB1T4CC1QvUCa70yTsqDtpJnoJ/aJ+/+Zu/qbQv/S6otarRd7pmkY+8z3d2CdKqOV0YpX6zGaM8Q8mRF/zN9Sxaw6sxalra/XhgFKsykyMmX/AtbsScQo4SQSGDURQe/A1GJsIork7gir4DK/Ls0WBUHufwLWTJwTAKphhwyjcOWqCfQQdpqzHqCgFtygEyL3vZywqMEu+yyy4bF6O0H3WEvs9//vPFSvHBMEp7evjIRBilf7Q8M3j43d/93aJOh8Iogwcs8a997WuL/VKUf6wwqh7N7oKzVo82NsT3OtqiYaz+GaPzV60sVnMbu7qiv+rqh+OhR1etXRt3fe0rsfD0M2Pxyo54bNEF8cSzu6P2O9+OlRdeFB3HWI9Sn237u6P7ycdj7fozjkiP7tq+PRY1NReD/WqMDg8NxZvPPTXOXbUsWlcujwd7e+Kzn/tinP/SlxQ0jYfRmr6eePnaxTHUtS/+6ZOfiea2r02I0c7d++JL/RH3ty6Ils7OKdWjw83t8b1T5xar/a964KG4dVd3dHfMPeYYna16tH9wIBa/Z3207O+Njf/2YNRGzYwd6+LptHzF8njymaeK07DPOfucIxrr9rZ3RdTWxKvf84r43heuj649o668x2qsi+vv9d+4Kdaetjr27+uKRQsXzZqxbl17Q9TV1sXe7q7Y1L8pPvmxT01Kjx7uWHfKJrZ2kg1DxX0mIQ4ctVLl/QPEsTEFULZyWRGCs3cq70Eu/CatlnIt8zAYefCefDwNjt8s+7NKwGBLv3GFTBYUTvb0UXcDtTRny5w++XaA9SRotSFP2gLLCUziKZ8KHBmP3wKDZ9Cs6x8MpGUTsABKmINnMHPF0j3WXh42oDDVMuhKD+XTNrQX6Wk/Lbi0DeCjrciHsqkH4MFKxIqKLizQAb3UD1qwBp199tkFzZSBwrRMaKAc+4iPeyegH2EizboZaeHimWBQcQAwrD/0CWVoKaVe0AttCDfaH0uaG+gph9/UAwByRYeWQcrRp9+9LcSTRg+ioRxPOvQ5QVcQrbzEhX5+e0S7H5UkafhGqBPXPQqZn9yAL7jtY5WpfVxi9ECM6mKlK4sC0++JMErZHm9/LDFKXtQfGcHECDdBeRB6aTustdBH3uJDjJIfOKX9wKoDG+ihftCAtfRoMEpAPhwKo8Q999xzi3awrWkH6Ge1HH6vxig06V5lH1FX4lCf8TBK+bQX77zmZyKMYtUmZNyMh1HaxBNMsWDTvpPFKHTjLo2bJ3mVGJ0cRqv1KG66HNoCbRNhlD6dCXp067PPRsf134zG5pZ4pGNJLFl7RkHfViZTu3YdgNHakZFYs25dwbMMNKv1aM+ePbHpvvvj7IsuPCqMLmyqPSI9WkxMbr41tpxzVvG+GqObNz4TZy5fFA319fGlG+6Ic1/zlkPq0cHamvjzWx+L4caWmLdg4UEx+pWR1hhgojjGD9OhR+saG+L2ttZ4tL01+rkfc2zFrcToIca6/b0xv3cgGjqao3ZxY9TuHJqRY93e/r74/I7r48vfvitecNo5cUn/+mh+vPmIxrpznsbVuCk6FnbEi3/ghXH9x24p+PxYjXWL6/qWLI+tT2+vxD/cse53b/huPLtrc6HLJtKj0zHWnbe5P/a37YuW5fPjK7d9tZjkTtdYd8omthSQT3rTkqTfNI0gKKioJ+IJKAKVcs9B9j938Klw0GpmWYLFRsmVdw8B3x4RTrkoEZmIj3Rk64ATNi0CLq9TDh2qH7/vtFKYp4JLC4QdzorL2972toJBvvrVrxYHCox36hzt5HI7VhwGoe7rA4DkCdOTL8yR76TSykeetolt7N4v9g7wnvxsI0BBIG8UHIFvmE5rDmlYQcG65WZ0V1x0s6FtoI183QuBANCtgjrZ5q4Akr9uGLYBdQJECA7AQzu5emKdyNsj0XVjc2APrQhUykJgkSdtRZ14B3ixkkGDl1VrNS9OGG1vL9rc/ROuCmkR1UpnPRUyBNtdPnRzvBN/2sf38pGWOXEg36sodF2RZ3X70Noqn5nfiYBRrInZ7etIMarCIC5uqqyG6l4jbsfD6Je+9KW49957jzlGaQMVpAcdkQdYoBzaB/qJPx5G6R9WdimTVV8HrJRlf2DR1ZJ+JBh1FYK9MtB2OBjVrR18jodR6guNXv1BXtQD5VwMqifAKHh2YHIwjDo4OhRGaQcm33zz3P6aDEb5H1pdUTpRMTpVenQQ97/auqhr/f7VatDkZGI26NHtu/fE/L6h2FpfE60LFx9wAutzMNrVFY/deFOc//hD0fmGNz9Hjw6wYjV2fsWRYpQ0zU31R4TROvat9vZH14IF42L02c2boqd/IDrrW+Pp3pp4xZIlk9KjQ7G4OODrUBhtaJ8T/ZPA6NHoUf5/evHCqOnri1buXD1BMTo0Mhr3aPVoxf25vjE2fezBaDl7fgzs7In6odEVupmGUdrg8Z1PxY76rti9cGU8s+PpiME4orHu6uVroif2RmMjLsMNUdswuq/X66hm+lh30aJFsadhd7zwJ18QT972eGHsOFZj3fq6+uh4bCR2P7m5qP/h6NHDHetO2T22dk6urCdvZWssxMMIplEYmI+zbwehLjXrU01QwWnJz/eUOaAhXy0cnp7mJJPyXbUBtPyGmWTAbEnimdYHrUM2MPF09bJjc/0VVgopXd5gLkAC82DZ5C4qrWIeBKPAInh6HSCHVg8ngnbdJrQW8lw/dI/SF1Q81zrE/64CAf5Xv/rVFT9/8tA1QbdBBJOn+LlvwaPSXZEhH/LQ+gtodKehfQEt+eoyQn2gE6HAYBTffwba3/3udyt7OgCZyoN03jOmZRk6AA2nrXr4AL9pJwWTQhTFznvoyMCkrVHCAJ9BKO+oD0LBPSjwkQLGw1jkU/hCRScYc//7rSVWS7+Alm88tY+41JMytDwqqB3o8e0l3LqFWL58MJ0Yzasr04lRFBx9wnuskF6VcCQYtd0cJMCfDiRs34xR+AXXU3hDDB1LjMIDuLLyHGxheacNeM7hSOJxIozC5+4HZXBD3rgNO6kjL9oCOaCHxeFiVD6kzh6kNRmMkh/1ZiWTNndwlzHq6iv5QwOuVrQlipi0JUZPPD06wkCFA1AYuPQPRE3jKK24G8dYXWayHj3nlFOi5alNcWttXSw/96LoGTtQcSKMbnzwoTjjvvvjscsuigVt7dHS1HSAHi0OwmmoL4w8tNGRYvSi0xbH1Y9tP2yMDt9+Z3S3tUb3WN9XY3RoeCQ+e//GuPLNF8bQQ1tKPXqYGO3q6y7cuadbj9LHb/rBN0RrW0t88C//vrijdErGuoM10X3nzqgbqo3auvHHup1dndHzTE/M62Bvb88xx+juvXtihH26vQNxa/ddceaa1xXvjmSsu3D+wrj11sfima3PxBbu1Z3fGBuXb4+vXXdNrF952hFj9FiNdQcGBqK7sSt6e3rj0Xsej+iOEw6jUzaxFRT6SEuAS9cqV4IVdmYvePNpq4LDNIJaS0cenNoZGfTuWXCZnkazc7QkoIxcWYQR7QzdPnjnErhgUbBTlj78eaU2d5xuKMZREJEOdwWYHgAJXsqA+XHNE6zZ/dHBtysSxHcVQRDCIN4ZBmh1++PjxFMhmzdg68JCHp6uBqMz8IU+lBS0Qxs05r5EkRGPZ7ga6nMP+EjLHjb2J8CYnvjnoQVaNgHSj/zIjxTpGSAwmSiU5pjlh/wANnmzYsMzlCf5K9yYpJBeYU153t1J/ZggUUcGyqSTf6gnQoJyFbQKcS1iHlvvIQw8E2g+d7KnBcqL090vovIjeIKe2NGtQryQXlcqaHBfA/Gg1TaxH+Q5sZOtltOFUU4LhC8YcIm16cAoAtp+cfBwpBh175BuXfaHtGaMsu+Ee20dpNBn9MOxxihtgcWYPMGUJ0SC00NhFAzRfvASq9PsA+QgDCbL7p2CTk54pj+h52AYfec731m0IWWIUdoNOpw0Txaj4Afaee6pldUYda+Uln8H28TnXYnRE0+PZowOjgwHu8wKGtFTY2lmsh5t2bY5zurZE+tam+PeffsOidHNLS2xmZXbkZq4fGz1oVqPPjEmB88599xJYbSdFY8qjH7+/mdiaHj4sDC6f8+eWLxtezS978ejfozXqzE6yHaCteti0fy5MX9OW6lHDxOjPafVx+C2gajfMmq4aahvmBaM9vT2xJve/vrYvOnZGKFeMTKlY91cz4xR+OGt77gyFixeGGvXr47PfvZzsX9/5zHF6NDgYKysXRDLd4/EvOF5cforTj+qse7pa8+IU1aeGvfdf188tnpztMxricHlg/H0rU/HxRddPKPHuvPxsvjus8UYoHDxrjnx9OiUuiLnwWF28ch7EQSdhKlotTZ5nHQGKpVyQGtj5P03Wk1tOP938EreWVl61QMKMbsy6M9O8MhxVzYI7qvSIqerULaMk7f1zgJOVyo6GdCxtwuQYGVmxcKN6lqutJy52muHkueLXvSiYpDHeza749rhMr0WGersoFjh5cln5K3w0LrjJnCus/AEWIBNfwBu76Ry4ED5AFarC8Dk1FCvFqFsTi/FfdON7ILbQaltTNm0G64TBPKkbgyS3AuiFQ/lrgXI/TS2Db8RAPaHExd+q2g9xc1+JQ70Um9dwBAqCkX5hfr7zH7wYAatZFq4bPvcF7raSLt8pwuF7kaeQChGskVVwaJwI8gf8poYtF2nC6PUF15m8qcAk3+nGqO6U9n+9u/RYtTPRBhVubgnif89zGIyGIU+VkmnAqPQTP1t43yC6HgYFTfyHe8yRj0U6+KLLy4mzazqgh3qPhFGoftDH/pQ8c29dhmjHlRxOBi1r9x7NB5GzQP6qD8fBvr0Tbb0lxg9MfXooTA6E/VoS3NTDPb2xtba0f3gLRNhtLs79t//QNQuXhQLLn9BDG7Z8hw9umXTpuhob49TTj895uCav2FDLFq9ekKMQk/f3l3RONwf+/qGnoPRvsPUo0xslwwOHBSjLe3t8YoXXhZ7Hnowntr0bKxctarUo5PE6H6w0BHRtmUo6uY2xkB3f7S2TJ8e/eBf/1089fjTMTgweMzGuownv33tdXHlW38gBgb6Y8GC+TE0ODxpjNY3NsQpa9dNmR6dO+YNMRVj3baO9pi3py0aFjdH7SNDceqZa2f8WPfJJ58s6rn+tDE9Wn9i6tEpu8fWDpV4gkD2igqtx4JUwGSLcm4sAW4FBIKV9H12NRRcWpHyzN7GQ1Abx+cVV6ix1UsvfnYDvdYqgSyzuVyvCwfBgwGylUum1RLBgSLszfFOSGjQbSG7QJAXdMD8CAr2r8CgWHqwyGgtJD2BMjJzkSe/3YPgKW0eVKDfPO590OoeMvK2v6ifDO9AmffQh1WJgTbPqZt7ZrASuvncfHiuBY56kYfWPa5awdUSdzLLlk6BAb1Y6XlHnaHHAS7PFBQEyqV80kBT3hugVVFeQsABdtpYK56CBlcaj0TH7UProm1OOcRl8E1fYE0rBhhjA0mtWjzziH7otG6kETvytEpR63B2y8BSKZ+Td/Ueg7znZ7owSpkMXn7wB3+wsDredNNN04ZR2gwX1OnCKGXCk/JKxijfKDXqi0XUwyYmwqh9TB+hEOHpqcQo1lfwr3KbCKOUBb3IGHgX3swYRX6AI63JpNU6PBFGuZKH9+w1mgqMQgf1ob7VGCWOShXaUMCkxVBQYvTk06PFSsK+zuhsbZ7xenTfnoFY1dUZW5oWRX9Pz0Ex2nLd9fHE6afGsstfEGedc85z9Oju+x+I22+5NZovvqhoy9VnnHFQjJ51ypo4ddWyeHLjlrj17vuOHqOkbWkZV4/uw7jGoLK5Oe64+75YtGx5QT8T2xKjk8NoX81A1C5pjvqV7XHx6lPinn+4NUYGpk+PbnxyUzGpPdZj3W9dc21cfNlF8fijj0fn/tG9zwfD6GAMxYaujbFsyxNx4/Aj8fzHTo29W3fOuLHu6XXr44ya0+OeR++LupHv75kux7q1xxWjU354VP6fijoI5tvCncnL1DJp3ixNRfXvV0gIdOJriaIBaDQtIloHnO1nSzL5uBdBGnTj4L3L7NKm5csydCshjeUJbhW6deTb5X8FkhY268NzmCzf12Q6BROButI2+spjpeYZjMfAlN8AB8YnD/dUWD7/Yz2zT3Ql0Iqjy4EDZ76JzzPyh1b9/Dn1DWBTtofTMOgE8LpIWifooq2Jb9nsCwSACiTrzAewc8elx5JDixvXs1uEljndZgS3PJTb0/szBZjtUZzMODhYTM4U2AhFBBFpFMo8p64KLC1XtHWx/2isv3CF41J42gFBhbuXR6STFkGAlY5VBQ7zURjbxwqX7MYhj2o9lI9JoxAQ3GIhH06jwp0ujNof8h3/z2SM8k0/0T/VGHXPZjVG3YfqZfS630yEUeoCRpiIUwf4mJWOqcKobo9MmqHZk4SrMYrbFt4S5IXyGg+j5IcLsgOtQ2EUbLCtgODl9UeLUVYSoC8rQetJm4IxPD8oC9wcKUY9fOpkw+hs06M98MbAYAy2tz0Ho/sa66N5zF1xJuvRwWLCMBQv7t0d39paG+2nnz4+Rh95JHa88bUxt6VlQoy2nHZqPHbrbbF2bG/eoTB670Mb4sGHN8THPv/lGI6aKcHolrlzovvRx6KppflAjI4dpLZmfnt856bb45Qzz4x57a1HjFH2Xi5cuOikw2jUUHZNbOvaFd39vdE80nTCjXWpy+/+998v+HHB/AWT0qPPzN0Vn9z73QLz1+6+I9btmjNjx7qN/fXR0FSOdZtmEEanZGJrY2iV0kJggVqDsvVABsj7U2hoZ/661ki4SlowurdBYOt6paWKfCzXE+I85c0GsgOzVUqLHPGzsNCKwHd2D6FsLREKGpfSBbX063agHzkAIsBoWpN0+VGIyeSAi/Sf/exnK66EuhoQSEtZ0usmb/MGlDCzABZwWhmx0uD+QPm6ClIeACeQ/tvf/nYFnAARhmWggGImD5kNC7orbeTvYQbUuzhMoLOzaBOEgyCUobVqCWqB534K8lUYKlw9JMDVHuhGWHj8uasV5KlrDW3ABIH+kFZPteSdFkBppQziUiZ0Ux4TC1aRADIn59KfuKmwikA+1JdDAnCVg3YEh3cEannTVUZeViHKXwR5yP0FCgPfGU9hoaCfLoySByvytAf8YpvOJIzCN9kN7NJLLy1WZ/gtRgnPf/7zi/tG4X+tkxmj9O/hYJTJIn2MAlAZThVGi31v+/cXrlOUhVvReBj1+h3iT4RRVtrle9riUBhlgu/1HfJaxih9Q7sdDkbBA+nIU7nvfi6e8z+KktVnBglHilGULL9/4zd+I173utcV+5PAKPKOtOecc0684hWvKNKfKBidDXq0wCjtxUrW0HCs6huMZ9uan4PRFXs7Y0v9KMbGw+hM0qMDDRHD9bXx2DM74tE5ER0TYXTXrmhmwLdz54QY3fDYY9G0fFmlfQ+FUa4X+sf//GwRdzw9OtDfHx3z5x8WRvtqIvoeeijmnnpKhae6duyIkaam0T2DHfNjzqJlMW/h4qh54okjxugl55weq5cvi2uv/lJEU1uBSTDa09UZl198fixYtCQuesGLirqfKBitqa2JgU2D0XxGW3TUtUbdcE0MjwyfkGPdhQsWHhZG1/bMiSf37IiBuY3R2T8SLbvKsW451q2bFEanbGKrINW6IIC8v0gXBoPEaBESYFZUC4fMSKPAMAJJkPotKN1noJWLfPltw9MZMKYAsvFy42vpkvl0idPSwLduHK4uaHGw3goS3VNcyjcdzEJ8OxCa3A/lvVB2Fu+0bFE+7WAdSEP7OTgkrYPZwi0qbcqmHPdbQS/xaC/dHnA1dAN/fg+YASjWGRWb7hMKOn3zERSeYApwvCqDticeFjcHwO7J09pJnRygQK91M45Ci98C0Hf87z1bvKN95RV99OU7BXdx5cDQUDFB07IInQoN4vBbwUd74r5m/0APg2EGybji3nnnnZU71wQedUDgICgRpOzr0GqW98NokXL/gtY2XWhUKio4N9d7CIVtINa0/E0XRgnf/OY3K+2tC9BMwSjvmVgiWKXn5ptvrri9iFG+WREUG2DA/axHilHak0kjK6bKh6nCKB8spcTDAsuEzSsCMkbJj9XQqcao/1djlFBY4xcsGBej9hW/5V9PQqQ+4CIrJ9JYNnRj+bX8w8EocXj+5je/Ob7xjW8U/MCVE5xESVp+803+1Jv4JwpGZ7oerUc37t4bnc2NUYteiYhNc0bv4ORu14zRZUPDMcJevO6+2ETfbN8RA30DsXfNqhmnR5/u2x8XxXDALS07d8emDY/E4nVrn4vRsdNYpxqjpIHucTFaV3dQjHbv2h3R3FT0Te/YFUO1u3bFss7u2DTm5VHgk9VG+ntoKE5duzr2DtYWGBIrh4PRutraeMFF50fHoiWxa8/OeOzxJ+LhJ56O6667rkj7tte+Il546YWxbffe2Lx5U3R395wwGK2Jmqi7bV/svb8n7up/IprrRumYKRg9nmPdjraOOLVrYfTvHl3B7Bsc3atajnXLse7IITA6ZRNbMhe0/E+hNqCnZmVg5qV5By/Z1U4XCv63snaelZHZrCQfAUfQIqJVhEYnjh2o9QtLBMzlhnMbE7q1aOivXijdsY4gyPzmp6UrCxP3RZCP1qh8IbHC0g3g0FdYRccun/Z0M+skkyjgDFin3E+RV6ssw9UI3TUcPCp0+QYAHgrgpc1ax2x/0yNQCqvjmDsYFjLcEojvnZOAm/eAG+sOewYQHNBBGbraeCocefPe/1UYtBdlUkfcP8jPK0KgUUVOyLQquOQJAUL7ser1kz/5k8VAF1cL6qvLjYIWegnkZT9opWUV6bLLLismMEzydBWhPC2o/M+qGgMY9xnkPRxaLsnT5/KM6eUNy80DvmwxFS98u0o5nRjNByJY5kzBKPl5d6gY1YKeMcr/H/nIRworJDxLfBTFG9/4xkL5HQ1G8yBkqjBKGiZorD7zGxzQL8cbo9TpYBiljXQtVhmSL3WjPPstY5T8Wa39qZ/6qfjUpz5VuUd4shilXOrOAVlYq6ERZS0PK8v5H7nHficvsvfas9mO0ZmsR8lvb8voYK4+6cvxMHr7/DnR2j8Qc2vrogZXwob6WLBzd/SsP3XG6dGHaiL2tcyNNy0cif7h1lh15hmzB6OMS7ZsjsF9XTHMiuC8udHLHtuBgXExyim+9zzyZPze//6D+MxnPhP33nn7YWEUt+1f+cl3R2Nbe2ze0xVf/Pq1xfjIfZtFH4GRkZG46lvfjahvOuH06JymthgZHIm+gb4YHJlZenQmjHWnQ4+WY93WaR3rPrV5Yyyc23Hc9OiUTWy1pgtAfgt+r2sQGPnkOMGbO97KmwfBmbonlhH02bayKirK0B3CiisUyJu4Wtcoz2/eCXjK9VATLT1aqPJGaS0iWkqlTQWt25QrObqRQENxUfKePUVcrU0MqhWSXlgt4yvsPeKdvClDMFtXmUEB6aEaHtlNvu5jsB0pk8E9q0AASuXBFSGCT4AjULDGQLv9SzlYaWxn2pHnDCipE/Rzgi7t6WXbuBZSlryg8MynyBEoT+sMABWwlA9gsiWLtoBO3tmXCq/sDkHdyANhhOChXlx3Qr08oQ6atTBphVOZeH/id77zncKybFsLdtpUaxXCiee4crI6iKXP/RXQa/10IxLIWoS16JGHwtd2lrdVONlymhXByYjRPPioxqjuLJSjGxOKyyuvrrrqqoLXZhpG4SH4Dj5VyYFReJ68ZzJG7XvKpV092ZI042FU9zQwijImv8lilGfgjH7AvYxrm8RAxig0YYUmLeVwoAdGgxKjMwCj1KmvPxpamkcHaHPncuVitNDudXXxSPNgrJmBenTl+tNjGbrhnjujftnKgobZhNH+eR3RU1sfC/Z3RT880tsbg1EzLkaXLmDrQWMFo5R3OBg97YzTiiuIbrjzvrjn3nvHxWhXT2/8/cc+E5t27o45c+aWerQc65Zj3Rk41u3v748nnnyyuMv4zDPOiMsuvey4YXRK77HV55zCZTZ9pF3VERSCVjeK7D5lYzubrz5lzsp54IgzexrYlSTd5YjvXgMCjUYZusFlf2037PMNEwoerU95udtJC+Vm64J11nXEzqCDSA9QdcFQyHjyl+4t2QqG9QZgAkRo8jQ28vbib5fxie99UdKY204XTYWD/SQTaSmC+QQudCMkmJyhuBSWlKPvvQIMJtaiqMWQMomL9UdhrJsKcTy8wwmF95FhEYPxdRcxn0KZLl1a5IM1CJqom+CDBjfA42ZoPOhW6Kk8cB9hrwH5yovsl9CyRFoPDNJ1hrYhP4QiFi7dF3W7cVWE+ujiQ1mcJMvdZRy+g5Ajb11M3N+hq4WuNboZ0SYevy8/uSeGb+hR4NrvJUYPjlGFqW1AOQ4yrrjiimIv7kzGqHt3cPtBQXlfHWVNB0Y9CfJoMcqkEXxCB3XCukt86lWNUf4nPRilP1Tch8Io9fSOPu7txbI+HkapD/v4sEQ/73nPK9oSmjxhssToDNCjdd9f7RKjg52dcVrvQOxdf8qMxej8BQvi9N7eePjOu6P7ihfFU3ffE7vADae3NjfNGow2790bT7MvbmioqFM1Ri89/5zYsrerwGgMfB8Ph8IobPT2172yoOsL3/peMTifCKPfvOXOol3g51KPzkCMlmPdk36sW19fHzd1bYieubXR0TInXn7W2qL/jhdGp9QVWSaX4QtXlTHXA35rqaAB9ckmVLsZELI1y/RaXbTyZ5cm/heQ/Pb4bz40FJ3v5vS8/wGGgsHpODpda0ferJ2tBeStZUuLgm4ZxhMACqLsuqHbhO4PuDHYFvwPs1qu7hOkB4gykoLDztVPXVBrGeSZLgfuTbBvyM+juwU8YEHB0A55M7unzClgAZFuKlrgAI5ufJSn/7/7DKwP7aFl17aWT3RhIQ7tzwTj/PPPL9wbWHGBoclfS5yuLPym7VB4pMO1VMsWAgUwIKwIthvl45YIbcRFYUIXljbdi8wDgNMGtBcrOh7/jkDMhy4QyBdlxX4EyiU/Jh4cWIPAZm8f+yKlJR/wULgljR3pbvuRr7xl23rIEXXWtYj+0RKqQtMKWGL0uRg1XjVGScd9edlFaaZhFGUBT9IexNH1iT3E7tWZSozyjvbXhStj9MUvfnFccMEFk8Io/P/Od74z/vM//7OSz8Ewyjus6NLGKZMHwyhtAT+zvxkaOBRMC/pEGKX+tB2B9iHN5z//+RKjMwCjDWMrX9UYrWlpiceamqJ17JCxmYjRjU88EcvntsbmpSuiIyKW3313nNfVHde8+IXRPw16tBhs7tgV0dY2JXr0tptuiFvuuOuQGN27vzOWLhvVo+yVnb9w0aQwumbpomhra40vf+emysm2pR6dfRgtx7pTM9Y9XD0608a6z+7cFjc8tjmGBnpi1eLl8d63/Ohx1aNTNrHVt94CXC53s7THWts4Mo+Nalrj6I6iC4dWGIUH71wCt2LkKcgZ0HjMNXnSOFqIbDzygUlgBg4+cJ8BtGQ3Cy1jNqKCTWBnS5dWNj6ebCb4PcXM+pBXcYH72J4LmA1avDOLQP1hgOyCQR1NnwWOQkI3H10sdIfRAuReCvPQB947LaFR33n+5z1lai2hzQCPlhjahdUOQMF7niloBLpMSb0YrGbGlNEVJlqAcDdav359YZ1V0EMj7aUbIf+TDxd5Z9cFT8gD0Agw+0CLI/VlNYc9A9CO8gfonvAr6PhWMEI/K0ycoGsbOjnyOHna+corr4yXvOQlFcucB+OgjG+44YaKMlM4u+8jT7bob/pA/tdNx3qQDlcV3LLoG+oA/bQP7eh+zBMFo7wjvuFoMCoP6IZs/asxSiC/mYZRaOI6H9sXejmZkLynA6PE5Xh/TkLULYx04Oqaa64prMbw4kQYhU7aiwk5eeP6+7Wvfa0YCHDK4kQYpS5vetObCtxAOycujodR8qQ9oJ068Jw8KS9jFLppEz4MIsgP2tgbSN/hSobb1NFilKDVGcWPDKMuJzpGp1KPkm8t9cE9lhWGsZXIaowO7O+MgYaGGYfR7t174qpojuaxw3z21ER8b057DI2tqkw1Rvfv3RtLt+6MLbh1rlpx1Hq0dc7c6OrqjN27dsbCRYsnxOiufZ3xth97TXF9SXNDfZxzyaXjYpR+PGPtqjh19cq4b8Oj8dTGTXH1tdcVtFRjtL+vN5YunB/nXXhRgVHqXOrRqcFoc3NTdPV1xZzl7bFv8/5yrDsDxrq98Pspi2LH3tFV4okwWuzf7u2J0889Le6+7844c/3ZM2asOzIyErf904PR29obc3bPmzI9Wls32ndz5809LD06ZRNb3Q60vFARfalt5OwfLeCsMMGOl0lhsCwYeGcDeOIZjWODORjyhDdPTtN6Uy2Q6Bx98VnepwN0MXCPg5ax7LeuMNYvXXcJBQT/Qzv5wXDQAT3QYVt4FxeBcgoXqzFLCB2VBwZurM+uGfrqa6EymEcxMBg7tIA8aE/axhPQAIAMJD18FIJ8W2/agAGL7je6rijg3FfhgQAM5nRtwUpIG/BBQDj4zG47MCrlUB/bDaGE5QhacNWQJi2hCAueUzfaFzcLGZ5y6Ef6FKXlINwT3lSUfLAoURYns/7DP/xDhYfoK2jHasX/DAoEoPxp2yhgdRFCWNNGPEPpYGWmTK6XgG5oEiNZWWm5oo2yFRX6eZ6xwzftQ98r/GxnyqUNPIRhIowaZgNGqQ+TIH5jcXZCeiQYVSmDv4xR2l0rs4O9mYhRnuV76uAxMOfq5OFg1P015MWz/5+9/4CP87zufPHfVAyAQQfYu0iRVLWK1SzJstXcHZfEJXbiJE6cspvc/FPubm5udpO72Wyy3t2bxHcTO3GcxHZsx92ObfVi9S5KlCj2ToJEITqmz//zfQc/+CUEkCAwIEGJLz7zmcHM+z71/M45z3nOOY8Fdhij4ICEEZTluF67PtIOMIdL71QY5btNmzYF5fgoH9qHoKW/7MROxCgX7WFcfvCDHwRxsiifYYzabYl+EDNkt6ewFT+MUb4Dx3z3la98RbfccktgiUYpxxWZRFVf+9rXZo1RH25vBYqxu/rqqwP+xPjh2jVdjL5e5ajb2dDYeBxGR0dGVBgZUqRYUDRZocX5iNHF69Zq9JVXxjHak25Q/RWXq6+rS0RLngpGR4aH1RQp6rrFjXoxVzMpRhvSaR3sH1S6rlbJEEZnKkeHhkfU29Or6y69QE9t2TkpRmuJ/RscCp7ds32revqH9I4JGKWduJNftH6duvqH9L17f6zCGD6hp4lylOuPf/c3g7IZR5Rr+jKf5ShH9qh8dsjR3v4evfP3btfo4Kju/uz9UqayMD+n6545XbdjSZvWbFilgd4hFTOlKTFKOT/1kXdr3flr9fwTmwNX4vmi6x44dEDXLb5Akf6Y3vLet+hf//VfZ41Rvv+D//r7Gi4PK56MqWfXMe3bcUCHjhw6qRytavIo+68bCLaMGST2zTZoLcAYOBOhrRNcPrDYg2F3AluTbP1w5i9bU5gsgzrsg+0B5TcmzoNrArJlirJsIQnHNbj94ZgDl2tm5HgDZ/VkHCBgCAcXBiabF32zmwXPejLt9mAiMIDsngKhejfA4+i+e0xMKGawfufiWdcFqKiHOpycwEdyeJysPIZdLLC8WYG0Bc0Kr11N7E5gmsDyxRhAhPwGwLyDAhARXK4btwPGD8UZwHoninspg/toL8oj7VuzZs14DADumMwt/bLyjNWMsacexp26eMYuQFip+Y3yEew33XRTENPn9vmsS8+LYwRMN9ClhRL9x6L8/PPPB8oyCj9KAd+jfFOW4zV4zu4zvEwXjLGZics2LfmibhiVF2PhlPp8xxXOnhfGqN1fYMDMpZn+fMaoz43jXuYynBnzVDFqHhXGqM9RxerJuzMEzieM+nsnnLCbEnMAXc0Eo7SbRSN0Dj0giCbDqI9H8ZiCUbtvkXWY8ZsKo7TFVnGEKkkoeBbBxJm/4BRXrDBGmXt+BxPg+g/+4A8C4cUCmRjAa665Rl/60peCdlAm/TcPnwqj9BsFgToo/zd+4zeC72kv1mDKqgZGTb+2ajOHjIt3FijbmaGnwujrXY5OhdE10ZyuXtaoxoU1+rv+qEqx+LzCKOMRfebx4PlLIiW9onrV1ddrcNFCDcwQo7GBAX1kYa0W1kZUGujXwCVXT4rRzHmrdQSXwbF4ttnKUc4WvvvRp3TDFZfqicce04UXX3wcRtnRbW5aquGhIa1etkiXXXVNUPaxI4fVsXS5rr32Wm154Xll8gV1DQzrcGdncITQieQo/f6nf/22Lt5wvsoq64kXXtb1198wb+Vow7K0zrtytR75+mNSoTzvMUrm5ZH+EaXSNbr83Zfo+W9uPqfrnmFdN56o7K73dQ6MZ+SfDKOxRFTphrSOHD6q3qO9euWVV864rvvjH/9Yjz3xmD75m5/QtZdfrXxfKehvNTBq/KSU0sGhA9LiiCINUuuFzTryYk49z/WotqZ2UoxWbWHLBDsltS06ttrY0u8g+TDIwxYtK2p+1szD5XpV7xgCZ9XEGuR6bQn0yt++7N6Bsa8+n51tzACiDc7a5bgP2me/crc77JphNwczPLuIuO+0021nx8kAMJHbEuR+uSxnhQtbyWzFCsfVmMhsYfKY0k++h8i8MLBLgc/IogynpjfR8h2AsouId0Yo364ljstwoDntYby4zzEQgNvMgfvJOBu20HpOGQMuu+TwG4sLysQNgsQvMBfq9rNYyZgzwOwdvH/5l38Zr9vuibxzD88iFGEOjA30AkOxxQhLFceJMC433nhj8Bv3uM2eey8ILUgYG36jPSgPznTo/vAdTAYLmBVn0xD32b3WVjMLCruoOBW+hS3f0wfaTL189vjZlcRWXmfJmwqjuF1SF7tglEPbLUznK0ahAy678XiHshoYtfsYCx8soE63D13bYn6mMcpnaBW3YxZ9KDaUB9Yc83MijBoLjr/iOcpmschuJbsjnvPJMBpWfHzGHS8ELPdNhVH6Qruhc/BsjHIP7/SDc/FYYBujXMwBMUfwI+KC/uEf/iGoj8+UheJMv5mv6WIUHoxAJw7Xc0AbiAdisXwyjLoe5sNJPyZiFL5hpYtdZN9nCzl9slvciTB6To6+GqOHUk16ZdVGrdn1vK6oyWkgO6jnBrKK1NbPD4wWS7o4P6KX2hZodN1FShujixZNC6M93d2vwqg62tW9oFbp7n71ROI6evDglBjNDA6prqW5anJUkageeOo51dUkX4XRVDKhltYWHTnSqS3bd+vn3nyr/ukf/1G/8O5btDtT8QBJ1KWDXerB4ZFpY/RQV496Bp4dX0ScqhwNjCrUE48HPGQyjFZDjpbiRb3vw+8O5v39v/8ebbrvRW17aOe8l6MPfO5hNS1rUP/BgXGvsnO67pnTdQv5ora+tF3bNu1QpBSdEqPZ4az+9n9+TvFYRXaeSV13KDiDNqZFyxbore+6SYV4Qemmeu3ZtUMXJi+qiq6L7Hz5xVe0YFGHOlo7dHjksIZHh1VSWQsvXqCDTx0KzjKfDKNVW9jaymL/dwPM//ucNFtg+M2AttXFhB92gXCgvGMQ/J0BYIFvq0Kwwh9zNQiXZ2A6VgGGh0Jk9xOX7+D7cDvMjMJAD2/P22JE/8PWdt6ZMLsFOFMn1lMA5b54Et0Hx144XoI+0U4AZauexzzsFmBC53ueBTSAAuDSL4jebfd88Tz3BtbwNWuC73At9E4OuzHsPjJXWHFt4XKf3W/ebQ1z7AQgYOFEAL5dJD2v3nXzWWS2DqEEUgbMkDFhrAxcfqedjAPj50Wk6YM+cjl+wq5AtJ05INYI4cz31IsiTxlm3JxdSrmUjwClHVivbS21FYsxBYCOCbALkK1bZsLMN24tMBqeY1xpvwWEGRwX/XbaeGiT33w+mseYOoPjD8YOJjdTt1BggcA4eSeN9kyGUbvdmhFbCMx3jPI//TKe5gKjuPdYmfDiywrWXGHUyTlOhlELCOjCPOtUMIq1lrNaaVsYo9Aeyi90DQ1NhVFb9o1RsE37EexObjIZRm0t539j1ItyFBi7HLJYN0bhGZTDgpO6ULixLFMGrsO0gXt/+MMfjrs6TQejKPe2cvPid74D78TwTYZRzyPfE8vr8WGBPBlGaQM73ygyjB/jzIs2262S9xNh9JwcPTFG6yMj2p9epNpSt9It9SpHY/NCjgYYTRW0trFem2aA0frdBzS4ZIEKzU3HYfSZXErdNTm9PBRR5AQYTbdV3GqrIUfBKOfMxhMJjWTzyg0MBr8Zo/nsaMX18Win8pGKop6KFHXhujWq37dfh8fuffzOH6hvcETRRHLO5Kjbj0v27W84Xz39A1qxeIF+9Nz2OZOjq65YrqP7yFRb0Q+69vacFXK0Kd2k0cOjyo8Stxp7zei6hUglDvds03Wj+agev+epihzNnUCO6tVy9FR0Xdr+9OYng+dmq+suXrZQ73z/OzQ8NKzMaEbRFPSW0abHX9C6peuroutyff2fv6lMZlSp2pQaFqXVdbRbK65aoaYFjRocHVAyXzMpRqu2sIVo7EpCo70iN9F6dyDsF28XBDcqbBHiO/uu2yJllwe7FNhNAiJmArjsVukYBj9jqw4Xz0KArsvb6iaMwMVk7EBhng0D364Q/j8MHrsoYDly2+3W4NgygO405RAcE4oFxGdUha0mlOVspJTl1NhOd03f7CLoBRoX1jKIFvcd9x1rZxCoPuZSYGHGZdcM+9VTN+0kyQv/U8727dvHj7AxyE2EtpLyGRAb8LQX0FspNjNzchHu56J9jBmuu8wj32M9NoOywuTxoc92TTXdeAwon3usNBssKKTE1NEvt8/xR3b7gEnAdFFKnX3NFiS/aKuZpsfSV+BOMuYCYmsh37FDY6u5XWNsATM9wnhoF3PncbaVlXmxu1jYHccYs6XVLhwWYBOtWMYo7XZKes9hEOsxhlHTw2sdo1acwhh1AguXD13QPhSDucColScLjZNh1DizSzbl4trLXDmGcyJGKY/7WRBSXxgDzriIsPGuwVQY5R6SLnmnFYxSPvR5qhjlM2NqIU697KK+/e1vD9qHW5Xdw7mcwZE5sKCm/fBPsOUdhBNhFHz7ee7zAszuelNhlPuwaNu1jbGBR/D7VBilX9RjFynKsLt02CVuKoyeTI4G9BA6fuP1hNFcJqOXFi9WLJ7QQMsitY4p+3OF0VOVo9y7TqPapPK05egIO03dPSotbFNdQyV7cBijmUhMz+dTSjdMD6Mtzc3BgnQ2cjQzOqrmSF4rG2r1XOegSuWItm3dqreNYfTS81aoN1MMXK0xSlXOa69RvnO/Fu7domeTy1Tb2KRk20INdW5WfUNszuRoQHfDA4pHi1q1qEPrVy7VXU+9OM6/50KO7nv6oLY8uG18Lnk+LEfP6bqnT9dNtaSkRWX1v1BJAHUqui5ydCgypHufv1elUlnHeo5NKkfnUtedqRw9FV23cXFaDcvqlNqdmpWuS7KrwweP6LP/798rn4M/F/SBX/wpjQyPqutoV1V1Xe/K53MF9e7rUz5T0LYfbR+Xo6qrGHDmbMeWwu1S4P+ZIDONsDvbZNYhW9BNAFa27Z7gbW3evQNgH2xbb6ibSQJE3gWx64LjfXyfg7nDriDU5Uy2VmLCSr5B7zZ58p2Wm/8hdojGFiyUTfvjoxAyaQCR8fDOGZPpiaEdfOekIQhrK5J85gpbwGyF5V4IiIv7iDvjOfvM0z4rkc4i5kQFBrHjzWA+9ItyECYQPwRuRgfRhX3w7ZbBZwfU4+rKPW4X/WUcEH7etXCiHt6xuDnVOH1yggwnG/BY2YXEu06U74x8ME766zmmHM8xfUY5pV0oyaYhJzrBvdOM3jGBzCPjRj20l//N2J1AwoyFPjOPjssxjfM7ljAzJH8HHdi1hbLDbi602e4njLutgMYGbXRMDGMXxk7Y8mzhNhGjtN9z4zkzRu3+AyNk7u2KcjKMhq3QZwtGuYfvveChPdAfNGeMUidzZaFRTYzyjC300IgZ+Ykw6t1jzyHleFeA56Af8BXGKH30gmwqjPL5ZBhl3Nkh5XmyJM8GozzL5d0TC3hjlP/pmw+RH9+RGUtCgvuzLem0x+09EUbhiea3XDZgMMY8Bw+YCqNuj70cfMbfdDFqZWG6GD2RHA3ouq9PbfmCDqXrFRs7GuG1KEfJpntBoqAXj42MY7S5tVVDIyPjGK1JJtXXdVTZUnkeyNG4YtGCUjU1ikWi05aj9Q0NGmLcZonRpsZGXbSkRfW1ddrWMzwrjLJg7R0a0hqV9cYlrdo1mFUhEhvHaCwWUSoZ0fIFbeoZrBiqNm/fpd0jB7WglNXV5aP6/EBK+VJZ8bFEX3MpRw8e6dKvvOfmsUVISfu7erV09dozIkdnquuejXL0TOu6zS3Nqt9Yq3hrXAdeOjgtOTpR1z2cOKJCawXb+QVF9e/oV0Oi4TWl6yaTCaXqa/T8y89JuciMdd3WltbxuawYUVK68xv3qFgoKZlInlCOzlbXna4crdrC1j7sBqOtGnaJCPtrOxbAYLcfvQ8L5nn+5x3iM5BM3C7LBOzsYra0MagAzb7qft5umBCUrXPOZMd3EArtcuxY2Mpi65lBGXbJcIyBgeqgf8qy+2SYKdmyZWKkHLeTdtEfW93M5HywspkAL8ch8BmAmYlSBkoirnL01+MbVpa8o0CdjuHgO5gVxA3B33fffUE7IDoIjnoox8wLgrRbiRmoFU8rADAe5tBWPcrnZSulrYfUD9F75xQweC5dFuNBmyemUOezGQ3tpQ2eM1tz+B9rOanJA+tVY+N4JkDm3TEQWLnoK2OAUoMLlJVaCwQzScbcLk1eTHh3hXt8KDeMzG43puEwZtxGWz1pK0Kc+aYtjvdwP7if8m1xNN1b6TZdhjPMngpG+R6rml2apoNRvv/4xz8etOnLX/7yWYHRIIZsTMB63Cdi1NZjH3JfTYwi+LzrZwF1Iox6Qcb3WIepH5xTBvchzIyziRj10RAnw6gxaaHicvgeS7DniwRp7NJMxCjPMH+4ZdmdbDKMOn7NdGQFAjfT2267bdztmjK90PWYOPGEE0edDKOmZfpoFz9jlPupi0XHyTBqRdZK3xnFKC5w9DOkfL4W5Sj1blGNWuNljUyB0SIKa7pBmTnA6KnK0X4WNfURNSXjSg90aygWm7YcnS5GTyRH04mIzl++OFAwn9qyQ12DIzPGaKJc1K2r23X16sWqS8T1V/c/p1ysRi9t3qybb7lFtUmpEJdWNdVqYP8LevrokeA4kmzfsF4oSM/0ZVVsWXLa5OjwWB8JLbX77pnE6Ex03aHhYW1dNqRSsailu+NKhxJQzVeMnmld9+iRo0r2JtXS3qRorhJXfKq67pGXO5W4qka1bbU6+vQRlTJFlWKlGeu6wUsFZaNZxZOVWOQzreuO9mcqyR5vukQ//Ke7Au+OU9F1+/r7NDoyOqkcLQwXpi1HT4euW7WFrcFnMNBJT7CtJ+GjNEyYtgoFaeFDFiZbrAwqWzsMAsdGOHuW4yRsDeOy+4eJwkzSwt0xAxAHiiLfOdkFz5hgbOlxXW4bn23NCFvM+N7xNnZn4X8D3pntaJuD3T1+BiRE7dhHQMHYWNDb7Yq20mYAamu2+833999/f9A+zwVl0U4I2UTnbGVcEBXKK2VbceYZwOfAe9oLkZshAXj6wjO26vEKZ0/DKmbm7nq4x1YovneiFf9m0DqLKeVdeeWVgVuXrYOUTQweiivuP4wDBG73HTMf99XuTbiBcGC9FXUnDvJRFaZJ2gZjoP9cpkuDi7iMW2+9NXC9wM3T7kfcB6OwsKadtsi5b7xM83ymPMrmnXaFFQ7TvOl8Yvp7u1M5DoIyLFhnitFwcofpYJRxYgHC87awzVeMcjk2yQk87K57OjHKZ3Zy7IrruZ4Ko/QJC6zjiLjfcU2eN9oBTc8Uo7haev74P4xRXsEOWU1N0D+7sRmjVvLYZf3Yxz4WCLmpMOrYKF9uN8KN37mPBQU7s1bGWcg6Lo6ybUU+EUahSX7nRXzxTDGKMHfcD21lXsHpVBjlGcfyzheMnk1yNK7yBIxGFc9UYgbnsxwN6L+jQRuyWeVGsjqS02mVo4d6+rX/8FHtOnQkSMKUqk+/CqNL25t144ZV6qtfoObWtikxuj62SNcsa5MCEovoI1dt0OaeUd35wvbg9/OXrFBTvFbx4X6ti+aUHtipDa1Sd166b6CkWPvy4Nie0yVH2RX+H1/8ppYu6FB9ul579h8KdovPpBw9VV13f6lH2bRUykvZSEHN8xij80XX5fPmH21W07bGIJP3yeToZLpuY12DRp8eVTY6osRwTIna1Kzk6MHcQS24oV3RWExd93fPC123Nl6vR77xVKBzgMdT0XUxgl13w7Ua6h+elRw9VV03MGRnBhQvxU8Jo1Vb2JrhehVNY62Q+HsD0UThgbMLqFfl/G+BRrlYVKxoGYi2nltRtTXGQDeALGwsEIPYkbHtfupwEDPvdvOyVZTLDMEWLffTROr7IHomGYULBYi2GLwGvxVFPjsVt2MqbKGxxcbWLic3MUh5BsuYn7MlhJeBbgsVbYPg7Dtv9yfaZHdGQMN3/O+zB4MD5sf8+CmHNvgMSsafuhwP4XLM3MyouIdyHLNo66mZixMbeLeGRaUTCTjLKUrpW9/61qDf3//+9wNQ+9gMuzM4QYuFtuNxABvz7ft58R3KMkl0LIycUZYymDvm0DELfMf40AdbydxGfic7K8o29dxzzz3jVv2JdOqD5ZkXnz1Hmc7CZxrh3Qzd+HBGP9Mel7P0WfHjf8eimF7NnE4XRlkQMb+cj2Y3kfmIUeqArmDutnZaSJ4JjBo/tiKfDKNOSGK+6DhxW0lni1G7LPNO2VzGqM/Ac2IUsMVYklGZs2ax+Hqx/ZnPfCZ4DgFty74xGrboc1lRA4uM7be//e1grsjgaHd40yzPe6d4KozSfhutuP8P//APg/ZzNMHJMEpb6OdEjFK3F+ooFbTdMUQTMUp/uRf+YPdleJet0GcKo2eLHL2gNKR3LmnSFztHlcEVkXk5gxg9VTk6hMteJK/ra6P6l23bVF617rTK0e889nwQ6zqSzWlguILRCy+4QI2ZXnV1HlZTbUqbtu5QOrVfRzjbeSCvvv6B4zCKIaGtnqy2YDSifCGvVDyu+7fuU1tHhy7buE6rly1RZ/+wjj51hxrjMS1OxVUaKOmfIq1qO6/9pBhVPqubr71C3dnyKcnRUj4fZJmeDKNHB0fVO3oowGhtukHFKTA6X+VoXWdEscGCVu9IKBGpGFbmI0bnm64b4OdISblMZYd2JrouLraBHK2ZvRzNJkYVTUZ09MWjqo1VFtNnWtf1edV7du8JZO2p6Lokbrv80iumLUeroeuO5EbUel2blq5erv7dfYqUI+p8uFPKn1yOVjUrsl0gGEhbrGzJ8JayB8LEH1QUAj8d9YDZqmR3Bt9vZuAVO8Rk672DtcNuFI5RoiwHbKMcXXrppcGOABncbFXys9Rlhcvgdhu8jc739mlnonGV8eUAdltVXKZdMZz1jPajwDkuwglDaKutPN7Ct0sO7eJ+Z00zk7RLo2MBzDjdZs+FmaEZiOu0OwRttIuT4y68y2JmhfLH/46R4zNAQ6A42xpjZ5CgZFKeGSvtwJJEwhi7nNiVx4wVhRnFluNIUFTtfgFD9fxCI5TrOEnX4bk3PSA4sV4BdsehcNYWdPD4448H/eI3AMzZmk6Bb4uu3SIstGAMVlZI3kPdtlY52YPHwLTjcadddlnhYjx5nrGDiWDNowzHlITdiDzPfMeLMaGtFixuH58numfMJUYp45vf/Ob4PdXEKFZ86MSuPKeCUbuNepeReQY3zLMtwRZa8x2jVli4xwklqo1RW3u9m8HiLIxRhLKtpZQJLjFqmBcyz1i57bLlRXsYo/SVchDE4fkimQQKDPWBRY7zoZyHH344qIv+0kdcrFCAp8Ko43poD8Kaeoj7mQ5GGe9KEpzkjDHKvSgRtIk5oM0W/mcSo/NVjgbKYiKuYjajY2TIbqjTspqYfn9ZrV4c6NZzQxG9VEwqkUrNe4wGO2kk4olLT/TnNdyyQKnTLEfDGM3h3VAX05Ftm3Xnjr06wFFBJP5JNyhdzxFJRTU2NU+K0bu7+tWfyeq6lQuUL5b1T09t05Jly7V+3drKOZVHu3T+BRdpK+dDb7pLw709Sg8NaXFDm954ww0nlKO08+PvfKsuOn+tjg2N6MD+/XriySenhdGVgz06ks+p1ND4mpOjyUhcbbvLqktW+Gc1MfrU009px/ZK4p1zuu7c6rpDgyPqfPmIRl7JKJKOvkqOzhdd955775mWrktfafPp1HUT7Ul1bFygcrmktg3tynZllMvmFC2dXI5WbWHrwQ0DgysMPBO8LQVcDIYzfPkeb3M7psyN9++eLBOF67FQpQ4Tuq0uDKItWj5XkPgZlBjHbBnYBgXlePfJdTs2wIPqvrLr58D3cCZMMzBv+zsBhYFiS4MT1lCXYwx43m236wxlhQndFi8uE7atlyZAuzyE/fedNS5smQJQTnDhQG2eAdiAAksxF+3me8BKnQANBdLM28HqAIhniBOgPDKdeizptzPkOV7Owpi2M06A3PGEtnZxUW6YWXoMaDf3hl0ZuA8mxJy/+c1vDoS+LZ3OCEvqd/pOv3CzoG6Egq1I1GE3CLvM0C9ip0gLDw3Zmmdg2gXJFlq7X1CfceBkAGaSMDfuozz6Rj/oqwP1zRR83igv+uy++j0sXE4nRu3GUk2MPvroo4EroJMpePzCuJwMo5RrzJDOnrqwBjsWFYsmYw7dOrnGmcCo3bqmg1GegR6MDwuMamLUSifjNB2M0sbzzz8/GFMwY5qgXJ6zW5vHgAUnbaF9YRqlfn5jgUSZZFX8sz/7M/32b/924KLo3Qfaxu4wY4F71FQYtfJIO8DpdDHKc9Cerd+01Z+hl5tvvvlVGDUePJ68OykK4wfd2T3xTGP0dMtRkj+dCKORUkmr2pv0Fx+6XXU1Cf3VvU+pqxzRX/ZG9e9aSrq0uU53DI0qHnJ/PN0YJV41kUxMD6NkIC4mdbiuTTszRSlVGfMzJkeHh/XCjr1qW7REmUJRNXX1x2G0Nln3KowGZ+n292l5bUzL0k3KFwo6MjgsNbWrqbFBH/3pD6i+vlZrV6/Si1u2afXGC7Vn27Namj+qmkRC2eGhacnRl7btVH1trb5+z8PqWLR42hhVPq8bYgO6p1D3mpSj7eWG4LdqYnTTC5v0Ux9+t2pSSf2n//NPzum6c6zrZl/MauTljNL16Xmp6x7uPKxNPS8qo4w2tJw/57ru4NCgzjt/tdoXtGtkcEQbz7/w1XI0Vg5i9GOFMTkaj2m0Z0SJhhr17uhWz/NdqoklNZqbnhytysKWCjxR9vF356jUVpLABWVM0Nk6YIXKhM9vzghGWWYO9tc3+Oi83YTs28/E2tXNljVbzGydc+ISBhXi4LtwVji7MtAnW924bNky0zFj8c6E3fCcItuxC/Ydd5IX6gwrkHbto62Ob+M7x2ghHOxb7kyttjaFk7AEkzbmKmU3ABiQLX9cVt5sMbLrnDPIQcT8b5dH6kDhBBAAkhg4GALlssPCEQbUQ+wfChxtoe0OzKcP9IlnUYAoizEC6LZ8UbdjBs0oecaJO8ILGJ6BuXAf97gvDqy31cfz7NhJt8dAD9OtD3FnV4f+Qnu00TRglwnqtmLIPPA/745ztCLtOacsCyF/57HmOdMm9WMVo69YsByPwpwyX6Yft4X+mhGbKRtLVl7tvnQ2Y5Qx4Fw5W6rdX1uPzdhM12GMcrHwsbsxF1Zmxp82gX1o8nRjlHtYaNv1nWeh8+lilDbY5cmxKVNh1EkjbCHF3Wm6GOU6GUYp3zuy08EofUAp8P9h6zoKxDPPPDNOB/Tp7rvvDs7bAxv0ybRCm9ltN8+diFFe9NW7vGBqOhgNH93AfFAH7tVW2KD3iRg1r0Uh4n+eYbxI3mHeQx2vVYxOJUcDjILFXF6xmuSkGG2pTer/uPVqXbpysRLgOBLRb996tb738j71NSzUwz27dH1zjSI6vRgd7utXvLtXuUJR9bh05vJqfPN108bolmSjtpEYt6ZeQyfB6FzLUe5hR7R+mhgdJYFNflT/8aZLFIlGFClL5TG5Rxt+7Zd+XvV1LFwqZV288Xy9vGuvRmqbFCe2sqNN+7d0qTx2rNFUcpTXw5u26KHnXlJ7R8e0MRod6FOriloKTYyOiGE+J0dPLkeL5cqu1v/6b3+pg8Qej9HxOV335Loucu7x/ZtU25LWwlSrLr/88qrK0dOt6w5nh7V1dIfaL16g3GMDKtWX5lTXRSa++fYbdO0NVwdlb3t5h5a1T5Cj5bwaL23SygsWarhrWL339igdT2vfd/YrUxhVvFjB5nQxWtUYW7sX2FUgvKq26wQXEzBxorxFH95a9nfeZvfkOKjYHfLOh+t0oLgHwQtWCJ/y2F2AqJlEx395gLjfQDWBcVkBM9Nwn80c7cJiBk25ZoC0FYYL4ftA5UCwt7QE95kgvHXPc45bsL+6gW6LiHekbLHjos9mBmYituTZFS4QXqOj42AOu6TYBcDMCUBRHvdBnEHcylh2QruU8DvP42ZhgrZV1BYwvmMnxnMY9slHKaIcuzAy785AR7nMlZMR+KBrygGgLFxQCqiP72EkTvDisTONeczCCWu4+B3mixWL/tM/M2vHLfiIBrt/8OIz48N82j3HbjU8ZxcV2mpaNl3bRYZ35oE2M45kKrSQNb05Pb6Fl11z3EfusQucadhC5rWAUZ6xa5yZPa9w9kwz4DBG+Y54DxRGKxy+GF8zY7sznS6M0hd2IxmHT3ziE/rnf/7nU8KordDelZwKowhXuxFBiwji04lR6AdcgU8EILsoKArQummUd2OQsqxEea78P25ULBTpp93/GBvKqzZGKQscYu2mLvgc31E399xxxx3HYZR6rKCZZqjLGTPt0vVaxuhkcpSsrqlsTsVUzZQY7R4a1X/6zgP6p19+n9oa6xVl2jmrOBnX3uERPakGXafcacdo26KF6oTPSurYeVDd5y0/JYxGkjWKTgOjZ1qOcv5kU32tmnG55CiQunod7ezUxYkRFdmpVlQlgdGIWutrtbQxpWLhJ8eeSWNYLUsdV92gTOcWKTOihnJeQ6EzMKuJ0URDk36cq9WPg2NHGgI6OydHT47R4ZFhPfLQo8pmKq6053Td6em6yNFtg/u1O96l7GBZP5W47qzXdYf7hxU9UFZm1ahyBzI6lD00p7ou9zx0zyPavmWHbn/Preo83KnNT798vByNFlTTXqNSvqRoLKJCsTJXjfUNigxK2fypydGqLWxdoUEY9ne3NcgNsKXBlnBbjeyeZAuYyzDoXL6ZiBU8PjtDm4FoCxyTbAK2lc4Mg2dNeAaymYetPG6Lf7MyZsZjJu8gaLtvOPYCpc7EELbgO/4BInCbbanjHSuPLU+MrS3htMeE44OVfTSGLSnU46NEnAzGbnwGeNidwGAKKxCOp6CdAAshzPcALDjQemgoWAwCNhgBfbV1zYkKPL52A2EMfL+tV7x7TlEmaZOt/24fZduCCfOAKeAuQh8QYjAf2oU7Bzt8tjRSrpkq4wmDJwNj+GJMUPo9N1bOGA9n8bMl1EkabGkLp0W3QPKccjkDH5eFieeZOkx7pmHvZpnpmrEZQ9xv9w67Dznmw4IqvGB4LWA0XJcxyv8eo8kwags5lle7LnGFLc4WjLY8GqNhV8q5wKhpiPv+y3/5L4FQsHX/ZBj1uPD9iTCKm7VpxYtoH8k01xhFwDEujC0W6AceeCBw+cPK/ZGPfCT4juQYpjOPteOVtm3bNi6Q6R9jR4w1bXOMkRU4W9uriVHzDfNx7qPNTlDiZFamP1vVaQf126399YTRyeRonLaQ3XgKORrcJ+m/fvBmtaTrgl1ZX08d6FLNgmUqpZv01PARlcqnH6OpdOV4kQMXnRfIm+nK0eli9EzK0Ww2o4VtLbrswg0azuTU1JDWqiXr9NRLW3XzWHbivt0v6tpVixTH2oCxoSapcqGob37v3/T7a1aP7ZoxBsUguVf3kw8qHSzMyopGonMqRwOdC9k+htFzcnQacjSXVyFfWRye03Wnp+siR3f27ldnsVc3NGzQocEepZtr1Dvae1brutmxsc0NZTVaqrR3rnXdwGh8qEt/8+nPBZ/tSTcuR3Ml9d1/TAeK+5Uqp5SMzU6OVvUc2/CuiEHjjodTS9tS5I6ZyfA/nYDQ+J3OuzNWcswYzDD43j7eVnrDoPGgUD/lcT/WDrfBVrIwUzHzc1t/YqE8vp+2InE5bsNE6c/2QadcFG0IDh942uDENRCFXTdgyrw7XpGywkod9XGPXTtct4nMhESfIGJbuOyywD3hZAQeb8aHYHKA5mDycNkIXwQxbaVeFFfaj3XKqbwNdLuKWmEHHHaVAdCOczCDB7w+y86xatCC4wVgHNzLs5dddlng6w+oAbBdW8i+CkNiF4fnADhJbWAKMALv8oTdFvjMPbSH+3ADox5eYSXadOI5p41mVh4/vre1y9Zc05AZpwWUacxWW5frsTPjsGWZevhsN5Hwjpbp33E7ttqZWU6GUZ+Fx3MIBZd5Khg1vo1R6uP704FRj+NUGIUOwBk7tuwU2nrKvSyenKmRz45ZtSXaSY2gmbnEKJ8dszNdjNqViLHwUQ2TYZRxpP3exeDdB67PNUbBH4tYzx1jyXyAWVywiUG65JJLgh1YLvNHeA/1sBD3xUKYe4mztlKDtdxjTp+qhVEbG6bCKPPvPk/EKJfnhbEOewjMFKP5vgFFoXswlK5Xqr4ST3i2yNGTYbQjl9OReFx/8I179YVffp8WNNQHCyhGYziSVBM0OjSgZE1C6+tL2h7C6IL2Nh092nVaMEp/+8biAKeD0Xg0qg2jg+psbj4hRs+kHF27fIkaWlr19Mvbg+eCZGnxmP6PX/yYDgwMBnh9fN8+tQwVdc2qRcFCOJmq1YYLa5Vs6agolmPH6GzaslUbLrhQj93z3SDJC1mUIYG5kKPEa2fHdu/mgxythq57JuXoOV33xLou911/0dVB3Dz3Loq1BC7DrwVdd3BwUINPDqqmlKyqHD2Zrks5U8rRstSaqo4crdrC1gcQGxzeCjcBMkAAwMAJN8SEYAufrU5WKGg4HeXydybo8OB5h8cWL1uRbPnhHgebh60sYfdFW07cTrfJ/fKWv/tImfSdvhnglGVXNEANwdIWFG2IDkIKu1XalQZwUiagcirvMNFZEHI/nx17YKbpyTZBhi2ZZhy2YPqQbzNHLEGUCdAdgG/C438un32FEHZ99J02AyhAz/OAknthbDxr1wW+B1CMB/eiDFogAE7aSWycXZgc8+ZYDV7s9jjjnxk5LhykIOd/xg7XRRRiMxtbO33GmGmOfhAUTzttqaNun5lm2vL4uTyPi3eWHCNj11ieN33ZbYjxZGzsLuNnvPvEO9/ZNSOMEdOIE9CY6dslytZVY82MZSqMfuADH9Cb3vSmoE6Umq997WsBM58uRs3AjDsLKx+bNNcYpc/hRB12AbMlD8sm9xAfA66YU5+Vd9FFFwXlhA+vp93QE1gDXzD++YBRWyxtHfdxO+yo+PvJMErf2CV1fXYVOhWM0j92TxkL0xZjZDctJ4WZiFEUGsqnDL6jfbTZx078/d//fTBe4MIYoK8Ib8cNMR433nhjwAv++q//ejxGibqYM+8MVxOjVi6YO1ve+d/lnW6MLukdUEcmHyz2sokBHe5oVmlh+1kjR6OjGWVjUSr6iRxFro7RdDe7JbGYblrUrE17Dmm0UNTKBW36/kv71LJ8dbCIuSE2ouuaatVfLGvr8KiaWlo0eKxXmWM9almxel7K0UUdHXpT9pi+2dulUiw5p3KU/m3fskXLxpKojWO0p0dtra1TYnTb3gPS3gPjctQ6yyNPPas3X3uV+oeG9e6brtPqJQvVnK4NYmyjiRq9N19UKVmneCwenG27eWCoIf4AAQAASURBVOs2lQb79fzf/Q+t7OvUSDmvTUMlFZva1VFTV3WM5kdGlG5sPA6jGhlVhCNfWltOO0Znq+tS72g+q9pE5ege2r27/5BK/Xk1pxrU0th8TtetAkaJFcfro8jcStPWdRn7/bOUo9XQdYMjhbIVXoNc/9dvfF3Lliydtq7rpIzI2AOvE123qq7IYWXXq3sGzYqkO2RFzUHwJmYD1p9tpacjdMJ+9wa77+fd50nxP5/DPuZWEB2DwT20yzEwZlIGX9hKEHaZczlhd0aADoFByCZM6mZHwkSOMmilwj7//G93CJ4xoGzNsEuAlUDaGE6n7lgNynEiFfrjw6S9wLCy73PSwvEZ7gftoA+8bGV1kh7qxcJE3AQ7LiRTcayEj7Lgd/oO8PnMWFCm6wxbeeymQRt4OREAv1GW04qzKKEtLFJsCbUVyEl/uIih5DlcBGkzZbNYY6FG/dTHXFAP93pevaPnhDY8S92Ans8slm35Y75MI7Y+Ub/jZ2gXY2GLmsfEMYF2G2JMzMgcz+v+B0JuLLGELYKu09ZHM1bThhMumF5siTbQbYmciNF//Md/DGI7eY5yLLDCTOdEGLU7kTHKvcSLQgMvvPCC/uZv/mY8RmMuMMrYhC3iZnZhjJp23De+Q5A4cy9jicWT9ljoWBEAT2cao7yuuuqqIKGZXctoO9hi8UjbLSzmAqN2DeZ/dlmpB0zwvxWbyTBKvygLjNLmm266KXgOQYqApz6wCo3xLH1hDJ977rlxVzIujqfg+Bgn/eAdZQhBbnfRU8WoDRnGQhijzCXf4T5G3Q899NB4zJP7djoxuqe5XvtiUaVwX2NuRkYV7e5V3cKOs0KO5uOVBS3ScxyjYMcYHYspfPBQrx7uGlRdfb1aW/q1cNGigM6Vz+nqprgeODqgx4p1irXXqaCIRpChiqo8DzA6mRyl7XV7jurnG/v197UrVJpjjDbgJr1zpy7YsUvliLTnpjdrsKdHjem06hcsmBSjLmuiHO3q7dXnv/F9lQo5/fuf/4iiKI+Ka/uBg8Fid+OqZUokUsGitrunV20LF+vgw3doQ+6YRqNlZZoX6MFDB9W+6rwZY5QFeamQV0mRV2G0vqWlcp7p/kNKdx/T0YZa5ZsbVY+bdOj8y9OF0dnquoFrbLxi/AjcMTE0L8hrVHkdGujS2iOVWP1zuu7s5Oizud1KZyqx4EtS7Wedrjs4PKTHo3v07vpFWtK6UH29x3Ssp3daui7jtXP3DvUP9gd19rxOdN2qHvdjcHhr2dv/fO/zlkyoPjPJVgFbLP2cXS28cjdouYcBQ4DQWTMRKy6Aw4Ph8vjdllXqDa/0vRXu9Nrh+AK7NngLPOziQh0QOC+IOxy0bR//cavc6Oj44e62sBncEAUEbQIIp02HKP1uf3K32eD2boOtGGEitPuclTYuWzoo15Yy2oSiTD08y1zwG+NpdyrARxns4Phe+s07wOAZlELcHSgDQBIUHy7Hge88w/g45bvjJxgT5s+xD1jGGB8UWn7nfo+rBQblswtHRlW7h6AQs8CyUkyZjA+g/4Vf+IXg2WeffTYAJpYxu8/wmXg6FhRXXHFFcA6fD62e6FbGxW8cdUIsA4umH/3oR+O7xhPda0zXpkdbr2zRos8o/4wz7cDiRj8936YN06Pn0Bn+TK+mr7CgmohRMx4zUJ4lnT2u2F7cngpGqde7AxbEc4FR7zbZkhzGqN1iTobR8PEAzB9jThkWRDwDVs80RnkOAft7v/d7+uM//uPgO3BAG3nZnXwuMcrrwgsvDKzOzAs0ydgxf5RvowH1cu9EjNJfFq7OAg19sdt8yy23BPeiONjFGvrjGe7hmJ+vfvWrQdt99IBdsTjTFqy9853vnDZGaQf3Uz51WrGZiFHmBSXhtttuCyzj5jE+msh0jns7tDiXGE02VBKiBPQ+FrMZPdCpge4e1TQ2zFs5Shbg8hQYNV8/KUaHhnRprlflpqjuGZTql1USodHe/tHMvMHoZHK088gRKR6RUknV1deptrZuTjF6bP9+XdHbp+Wc8Vkuaw99qqlRz+ioul7ZojcVexSrb9TelRdPitGJchRDWtfhA/rc174bHPPTUl+jnkOHg3jW+PJmfWFXr37tV35RsVRa6zds0Kbubq2oAQN5fe7pHeqLplQ+2qma+rSuvva6U5KjJNJKjQ6pe0un4kuWT4pR2ptf0KbU4W6VFrQrwZyNLeROtxyttq5bLJdUiJWlgpRoS6lwdG7k6OtJ1w36npQOrC7qkkMtwXdnm64b7CSn8roj96L+8tLbgt1X7puOrrt77y6tWL1CQ8Oz13VXr14V7A7PRteNJXBHTijdlNbGJRvHc3LMBUarsrB1ID0VmjBN/P4+7EZgMIbjBkzAZhhhcLiTfMdlQrfVzEHnBqSJ3oA1qMODbbcM3+/PLtPg9wXhmmnwvd3ibMlw0Dy/89kMyUd02GJnpmeLlOMNbHnzODnui7qYVIPazMlts1+7CcKJK2z1sc8+TMVMxkePuC9cWGLsxkK7scLQNkDGfey0cA+Cg/qclc71o7RSD+OC+4NdX1CMbVHld5+/xTNmMD76gPqcVQ8GApPkd+o1AHBt5H8D/H3ve19wH2PCTqwtbLbu8T3tQKmlbsDId7ha2iLn2BT6yG+MIe66lIsyzX2mN/pDm1AEfuVXfiVoD/PH2X18R7mUyVjbAuf4Hi4zDQPZtENs4sUXXxyMI7vJjCEKNu0yoHlnvMNZF+3qYyEZnvvpYJTPGAZmilF+g8n7eBn+t/tmtTFqTJ4Io7ZqQ0NO0mAhz//QGeMLPucrRqmTeFK7Z5mOqJvnoMsg/m8OMWphbmuuzy60e5jdvJ0Ag3oR8JQLJqDlJ598MqBrBCJ9BEfc4+RSjBXvGBrAD+X8wz/8Q1CurcPeMfBYsfj89Kc/HSjDLFjp12QYBe+UQ90IbxQA6nnLW94yKUZt5efcZJdjxYp5dXZu6mFXF2yeToyW2psVH6PHeS1Hp4FRdqGvSeb0aKYSixYtFlTkDMPMsN7WENHlTVF95khBsbaFZ50cjUZiaqpNqW64X+XaujnFaNvKlTqazanQ0xu4Wy555DE1liq7HhfXRbSsrUadcenFzkPKlDQtORpg9MABte3foe6OxVrRfVC3pMo6cv9Laqlr0/59+7Vo5ZqgXVtiDdqYORxkJ35TWqqpi2pzqawjI0PK9xzWo1t2BAvcqTAalqP9hw9qxTf/TjvTaV09BUaDeSpL3W2NUjYnpSq0OB/k6Gx13SP9R9W8OK1ioqx6dvgOZhUrVWjinK47czmaLsUVyeaCo6t8zXdd9+Chg+OuzNDypgf3qieRC2QZfZ2Orkt87kVvuFC5fE5tHW3qPdYbJHY7VV13ZHRE733/e7T+/PW6+o3XzErXvey2S3TZDZeoqblJgwdGlO8szYkcrdrC1m4SJlCDyhYCPtsnn1d4i9sWIFtkAIoJ2VvUtoTYCuYA58DtKXR0h3ecPAh2U+BZL2JsXTWD8SQY3LYCGEgOCocQHatn5SAMQuq3GwUAcVut5Huc7PpGmQSxf+hDH9J3vvOdIPunmQBlmEHYzcVtoi9us/tgSx5t8GHVYdcTb+ubwGgX4OJ5A5qx8qHVXM7qxr0QM+2AAHnnfsaTvuAO4TMt+Y3vUcjpQ3Bu1vBwUC7f447oFPE+6Bpipp9YvswwrTA7vs4MkEXpG9/4xkBRffzxxwOhDMh8ZI/dJ3jO9BLsgIxlsQOI7BhxnxMHWDGxOwvP0ibairCnrr/4i78YtwrbffKGG24ImIqVXizOLBADC9tYvIUtToEr1dgh2dCCrXZ2TeJ3H4DN/ZTJ+DvOxLEpgcvSGM0aJ57jsOXUc306MEpZX/nKV4LdPcbXCZmqjVG3i+tEGPUOIDRhC6zjPR0L57jy6WCUslh8gU/j8HRglJgYMIrS4IyKNhz4cmZVaMlWUei3Ghj1riRCHNrGqmwrPgojyoPH0xilzcwn2GZcwAc45TJGaSdCn35B34y9jyVisYrA5ID5r3/96+OC0e7k3nmkXWAN/vQ//+f/HMco7aJfjCXKujMZs1ilDtpzIowy3igMphcnMjH9WqHgHZqYCqOU54yegTAdywdwpjB6uuQoGXKng9FkLKoPL0preW9G95XL+lRzQSvqMyqXIkrE4xrMF9VZkDrGYhXPFjmaxOh0NKO2ZErxQkSMbntbW0XpH+ivYHQsBq5aGO2sq9XzqaQ2jGa0ro8jQMpB0q2RxlY9qaSei3UoM7bomq4cXXBkn9YWsxrZvk2N9VENFyPqG8zocLZf373jLr3t9rcFSWySxbx6M1k1xiK6oJHdnaIKQ8e0NBLXFc0JvfEDb9d9z72km9727pPK0Z7vfTXYgV24cMEJMdqxZLEGalOqRZlm93NsUXu2y9HFDe2qGx3UaIO0uLZZ3TVHgyRdrxVdF95+4Rsu0NPPPqXNz7x82jC6ItKi5sZmRdJnj67b0FavD/3K+xVVTIM9w3pD94Xq3d8dyOLp6rrUeXj/YfX09waxwuGs2LGT6Lo8e9HFF+m8tefp2jddo6VLlqpYKmr3nt3B55nqugM9AyqrrOGhYUUbI9p07ya1NbWdUI5GV0RV6i1JOZxhpidHq7awDROfidrCjcvg4n9bZUy8jsvi3Vvw/GY/bO4FMBAD99jCErZCUZ+tSbaUGYhhpYRnrKj4Mvh8n33l/dm7Uk5THXYlgZjtm2+LiV0xvb3ueAgUOSto9k2/9dZbgxg2lCQD1/EFHhdPYDiQ3xYKWy74LRxczTNha4kD7e3D7hgYx4FASKQQB/i0kReWT+5H8PFs+Cw4Cw4TopMEsHPnM8HoUxAvNZZq3BYpx2i6L9SJEop1yJZNyrYlzG6otMFZJC2cuXC7YBeIvthtIXB7GDu+J+y2cs899wTgvf7668djKHyAu+nAYwkDwSXyN37jNwL3xG9/+9vBffQDpYB4Py8yuBe3FcqiTNOhdy8pm++xAFK+z0yzsDPT5B4Whu6HXZvoG4q5U+ObRnGX4bkwjZu2bYk9HRilrSxq6b93S0+GUVt+q41Rf7Zi48UgdYFLFmT+PB2MoniRyIHyrNScCYzyPQtHz7sFBnRBu3HjnQlGnd1yMowyl96Fve666wKssSilXdTrOoxRv9vKD05wcwJrxihjx4u2cy8LWRafCFPa9eCDD+ptb3vb+FnFYbdWx3pRNi9cw/78z/88SDJljNIPBD+8mvsZKz7zPX2Gb1jpC2PUbnTwY2PUShfP+tw+5oY20J+pMEpZCGvKZSzAhl0VzxRGZyJHixznMQcYXRbJqyaR0IFiRJF4VN8uNevD2SEtScW1ebiorx4rK1bfcNbJUVx2v9K8QG8ZyCqyfLXq4gmtHz2qviPdOvDsZu1dc56SbS3j7trVwGjdokXa3tqqQ52dunXPPj1/xeVaefCADq6/VIV0g7ITMDodOdoXTeihxauCOga7uvQze3bpcE1CxYUdKo6M6uXNL2rd+efrbR//JT3+l/9F16TpT4WGNrLAjURVfuEJ/e09j+umm27UP3/hH/QH//cfnVCOQvH5Ql6prt1Krrt0UoxmRkc1ONCvVeed9yqMvhbkKIaRhnyNkrVxLV+2/DWl66JzpdbEdc2iK7XpqReD3ehzuu7kum5XV3clZKwmqcJoQZ+6+WcDOYrhdrq6LgYeclwMZ4b10gsvj2frzk1T10W2/sInf76SIbq+Vvv37FNLU9usdN39Lx7S17Z/SzV1NWpqa1IsG1dmKDO1HM2OavG1S5WsTSpajmr/V/cGyetOhtGqLWztrhZ2dwoTZph4/b0/O324y+G7sCXLDIjvwz7W3qEw4/BzfA/T4BkIzETu8l2erT9mGn6F22lLla1ZtJMBD8f0GTy2XlGeiQ6i4B3ChWDt3uFxYdIRKLjs0R5vxfuwZ7uqmGGErYHe/reVx2m5qcdM1S9br/zZvvOOBYDxmDn5KBQAhHJmhgwYaS/387uT7HDRZn/vA6epCyWKOeBep543EHyP6Ya2YO3i3YdF24LHPQ62h6FQHmPMu5VWWyTDbjj8xmfGhnfKqcQLrA5eMAo/64O+TcPOQsf83HzzzXrxxReDRRHzzGcEMuNGO8jKTLwDSr+TIHisHejO2MAA6SNupo43sbLsnWPax9j4CAAvzowht5W6WRRQPwsDyrSAMh5OB0YtPF3udDDqLI58zxxWC6NOUOF6HNMSFty2DNuNaToY9VlvYTfrM4FR8OREQHaFg45tEYb+nFxhOhj1Lh7PQrfOPjkZRlnc02crUwg4W93t6k38KXSNUGPc/u3f/i24h7kO48wCHHdIsMMFfTEXYI4EZHgA0BcrGaZZKz2mHyzHWLKNUY8Pgpnx+vVf//WgP3fddVew28ocTsQo/3sewSc4DWOUuXDCET7bPc1HN4QxajzYyML9zBHfYxk/ExidiRyFVlZFihqqr686RjckyUFU1vJUTLlsv1rqWjQaiamEwh8rakkyqt5oRPFTwOh8kaNNCxboxbo61ZQq2Ijs3adFezv1vKJq5kzKZEKJsfGdLkYXZHMqLujQMVyFx3a0XoXRjg79S6GgjqZGjcRXKfHcJu1f0KHSWBy7MYoCDkVA3y89+KDKvT3KLFuupubmcYzmFyxRqqZGg3hUdPXoG4uXKrVokWpwlezrVw27Qv19SsWjunlxg4bHMQptV2hUpbIGC2U9/sIrumz9muMwOpkczV94pb6/ZYseGCpp+VgMYhij/X19+tm1rUrEGvVS06sxOlGOQiuek9eqHD2bdF3aVxqp1X3f/nGwODmTcnS+67r1NWn98F/vVCKR1Mqlq7Rv94EZ67pN6eYgdAavpfwp6Lr07Z/+4Yv65Kd+SYV8UblMQbWLanXHHXfMWNc1DQXeQn0F5VVQf7Z/Ul2X9l/19is0XM8GRUS1qVotv3yFdLR8UjlatYWtBZYJz9YOWwVsWbH1xWCz2wPgsG83RIXbgoVV2I2L3xlMg9JWFMqCYfv8Iw+yAWtmZ9CbAXhivRNj8HM5kxmKH+2kbp+zxW9MHm0M3Gh6esbHwcQP0E10PhKFsiFi3ukHrlOUjQWEMj1+7gfPQPwmYLujmFl4zG0ds8uEQeXDvE0Ettg4yxzt5B3Q4M4FOGFm1M8OEGVQNkHm9JXspfQfwnI2M2fpYwyshDoGBEXS7jFmvPwfjlFiHHie8inX1h27wvA//acMW4G4j3sYH9rufnsMbaFzfaYRymKs6avj7gAe5fgcQepkfH3G69133x1k/eUIkm984xtB/1hcf+YznwncVAEi1jS+Z2fKGWHDcSCum995ln44EYNjQcyAbX20YLN1zTuGziR37bXXBruJJPywgLLgMm3MNUZZVNAfyoWJcU2GUSv8xqgFiBl6uH8TBbMx5bl0Oydi1PNNezkPlTm1uw5jBs1w2drp3YqTYZRECbY6hjEKPVIugnIuMerdbegRmmExaOFJ/xBA0CD0DM0gRKaDUfpIG+1qRR+dKIkrOCphzH3KQt704TgXng1jlHaACT47lg8BF8aoF55c5qVc9BflgjFlx/U3f/M3A7dS2huee9Ml3znr5mc/+1n9t//238YxiqLKfJIdEnz7CAraPhlGbWjhHSzTJp6Frmj3xNhxFvXO9BjGKG31Ti5j6WMjPI9nAqMzlaPxYkE1xYIODQxowVCfOusaX4XRAjRBu8faMx2MRvI5XdhQ0l/tHtS6dFKleI1qcyO6p32dRg/vV005osGGVsVylVi6s0GOhjG6sFjQkutvUO+xYzpy6LAe6xrSTW0Nel9TjfZs2azSB38myEA8XYyWOjvVeNVVGj16VP3s4JGg5cBBKZlQZizuexyjyI9Dhypz2dSo3ODgcRhNxeM6umWLFm3YoAzuir29KvcPaMHa1KQYjXBO6WWXjuM119WjVE+PakWiwDrFE0k937xaSwc2K1HMBTHgxiguh7ckRvSv27Zq46ol+t63v6Xf+v/9zgnl6CP9eUWSyUkx2lTOa2Fdjb6zq1vFwy9qywubtGb9hlfJ0SCzbjardKyk4XzurJCjxFRecOkG7d65J9hdmwqjbts4Rsd0W7vvzmdd94c//KHiD8TUue/IGZGjZ5OuG8jWuo6g7RhoZ6PrklOC71isbj1FXfdY7zF9+s//h+pq64L4XmJwZ6LrQldDo8MaGa7Ua4OF3dYnYhResGjZQl133bV68ugzitTGlK5PV/Bbmz0pRqu2sLW7mBUUg90WI14eSDMGW46ZLAOLRjqVNu8oaQycCd6A8m4Mv9FBuxnwvOMXqJvf3TZbFUz83vEI++2HXUbcF8oJW+NpmyeAdkMUECoMls8mTFwO6BttA/g8A5B8ODtlUS7fsfUetqj5rLRwlrGwD7vbybvjCsetYmOERT1mZB4DL6DMTGyh8zEi/I9i5vux4rDbgLXVGeLcb8bFvvx8Zv7sFmKlDwXQLopmsHbto41B+v4xq6atPwadYzkCa21/f3C/z0qzwKAfdrlx1k8DnDJ9tputj/TPICBmkIzG0JgthqYFK3p8ZvELU2DhhssSbeA+2klcksHpubNFj2cdU2GXCe/yMN7MPf2COXie+d/pzh1DAh3Zwkg5zKvjurCeMV+2iLnNToU/lxjlWeoOZ15k0UXbwhiFsTPnfG8mhoD0Z+/aun22uIIZxtrKiDHKb+DFAsMYZWwdP2N3Kfrj1POUzbhDB6az6WCUeimLNoeVgXDK+bnEqL9HOOCiixC2wLZgpu0IYh94Px2MQiOMF+3hGfNF7rPyRxuNR59Zx2VBy+UxoGyEmOtA+XL9k2GUNpp3e+eY54PzHHfvDtzFPvnJT+pzn/ucHnjggaA/lGm+bYUd/vToo4/qr/7qr4LvvMPA7jHvGF9sDXafJmKUsQyfKUi7oRXGBh7BOwoGNGYjB9khfa6jMeoEKtSFKxh0yGLd5ySfbozORo62RKTmeGW3b4FKOpTPqyE7qnIhp55CJYlHPS7aWP7BwBjtBnggXjmX10iqBq15HKMDfX26pDai7kxS/e3LlB3tUl9NWqP19SoNDmk0XlvhjWMY5ezSs0GOBgmziKdtbdXG3fs1+sbK7mhtul7iLNiRviBOtWdhh0aPHDkljKYXL1Y/R4S8uFn5xYsCN+bCgo5g8ZY/fFjR9naN9PerZmRY+URcR4eG1JGMaDCbU6m24VUYXX/wgOqOdKrr5pvVuHy58iSIORlGa2s1tG+/NkSKOj9a1KXnL1br8uXauveAbvz5T+nzf/c57XnoXm1Mx3XdwgbVsugpS5e21KlztF/fv/9Rffw9t+mH3/226upq1dSQVm6MhsJy9EQYzZWSumNPt37q2ku0oKNdn737iUnlaHF0SJ+6+aog3vsLD70QzN98lqO83/bOW7Rk2SJdefUVKpdLemnTlqCMMEYD7LYmtO6NG9X1fG8Q87jygmU6uq9b8UJ83uu6wWK0d+RVcjQbyyrVklJhaG7l6Nmm61L/fNF1I2MJRmeq63YP9aj85joluuMaeHlQdbmU8tnclLru6OiIPvbLHwl29m9bfUtwrvk9P7pPA4crO+Inw2jVFrbeZvduKf8blHSWzvNudxgTk60dYSu8lVgazBY6R7OE3QzsWuWsY9wLWHgOwQZhBP7pY8H81O3dBi5PqNvgiXM/wq5bnjSUrkDYt7QEZY5bVRobx10IIDwmBwXJ1h0m20dzQASMhyfEFkYr3wYz4KIcLB4AAIKlTR5bLyT8jK1xZkCOc4RB0bdw1k+7yfA799N+6gi7fNhaSD3MDwod/wN2EzJlWvl1u8KWa1t8LRip06Aw4+dyG83kwtZHCzo+O4aGcp1QwIlkDCTowXPMmDmon++5h/KYR5gaF21473vfG4wBrhX03TTGc7aIUT+xub/zO7+j3/7t3w6YA9Y2dvJcN/dAd16IOKbTZ315cUWZKO9hBkUdtNExhcwNwsFxC0HM05gyHba6woidSId7w+5Yk7lnTIZR7jdjngqjjPdkGOU7LHvf+973gnbbqjkRozwPk7QVlj5hoedi3GF+tNVxJsYoghN6pW2efy7ahICxdT2MUdMNY2Zc0wYnM6oWRuEzTtDBPNhNfi4x6gWJY0uoA2ssAocdTi9gTgWjplcEn9P227jitiLk2PELt4c2UJcVdAtucPGRj3xknBZ4znFaU2GU6+Mf/3jgkswClvFnLj//+c8Hbb399tuDRST9hBc5Sybz6GRI9OUHP/hBoAjQTnZ7+X66GOWCPkxXXOEzGGk344Dgd6wtfUQehDHquTNGUbadOXOmGD1TcjQz2Kd3JEsaHerVeTUxFTOD2lfI6kBwOm1lUdKPuzX9KRSVC8lRjigaSI0tAAYGNTzGRxmLvfGYOopl1abrtC21PFBamtrbNdTTpXIVMXo65Sh0Z4zWRso6dLhT+XhcPQcPqeOFLfrejdfpqlK/jrV26NgMMbr+2DEdQPHv61dh7RolUykVx/SStoOHtbe5UY19A1rdUqffuO4y7T42qL98fJuGhgeU4exfzoYdGtLBWFy/PTKsRXfdpWw0oifWnq+asbM0p8Jo13ObdPmBw2pesUC7li7RZaWsEsWsLl6/Vi9uflFve8c7tHnFSj37zDPadHCfVkRH1B6XbmxP6c2LGrWhHNeq9kYl0o1auKBD129Ypd2j0WDBPl2MFsrS1uGiPkoW7XhcH7z+cv340FAQ1xyWo2tXLtSS9hYmSgsaapWLJee1HKWcLS9s1erzVmk0M6Lb33Wbtr68/VUYLcQKetuv3qq+QwM68my3Lrh6va66/Uq98uw2PfXDZ8f1obNJ1+1Y0KHyhrJy5Zxe+foramuZezl6TtfdfNp13XyxoEhtVPHlKaXWNKj24bwGjvZPqetiJty5dZfWrj9PhUxB3/3qv0mlysbWdDBatYWtU4H7GAgG1im/mRBPuonNlg/7SBs4lMGq3VnGvKviXRFbF5wYxBYmFAhbjHi3hYrnGGTHndkFwwTG/743zLTMfLy9bpcMu0fyog1WzDy4TixCfbbGUL4tdfTRDNWLbsrCjcFHW3jszAicfc5b/uGAaVt7vB1vd0kupxA3M/L82Kpl10FbxrjH1jonVYLImCvaz3yY0QEmlCEug9njGw6i50JJol0sbnyupHe7wpYsg9pCI3zoM/+bIZGRjfpt5UEwOSEN9/Bizum/LWB2PSKeB1oxc6Gcd73rXUEWVtME1mMUWJdJf6ArQIWyxLmcLMaI5/J5nh536rB7p9vO97TFMT8847kwPdFvfjdeKN9uoTzr+Ta+XJaxAwM0M7dAPRlG6Rv95sK9ZCqMcj87sVg3GSPowhilnyjNjBfP0VbTozHK82aAtuz5HXdPFG4EioVS2OJqDE6GUcdj2EuD+6jTwscY9YIjTEuzxajn2XEjk2HUlvJqYhR3OZ6BR9B25s11Ml+m7VPFqOmYe2wU4KLtCDe3j/t9DixCizrdb2iC/pEhG3cuFsv8T5tOhFHvGLNDyzsLSM6y/ZM/+ZPg6B8WrLbKfuADHwhokTbdeeed4/E88BgfjcT/GE7o86lgFMzRH7utWUFl59UZkL1YtLJhWg5jlHuDM1f7+8fHdqYYPZNydKRUUlNUel9tRF/uK+nJrJSsbSRYrbIrNEbfAd+sq1VsLLnLcRilryopjgI4xt8TDQ3aWd+m8gSMKpZQuYoYnY4cjYyMKNbaWjWMBmOxaonSixYphxeEyhq87iqVMqN6YCSnocH9M8bo9ksvUZQYR/4fO/bCGO1evChYuo6k09o7SCzjiJZHy/rvV65SpLVFB4YyysTienRPpx7rLeq/t3XottERXYCbZ33dSTGaW7lcmQOH9Ui6SQsWdujFvpwuzEZU6D+syy/aqN5jfbr84gu0ce0adff1q7auPohX/fZ9P9CNaWlVbUyJoWOKNjRVaDlf1Np164PPp4JR8PaZ7z+gf/eet6gmHtNoJjO+ALMc3bK7SzdfdJ5isUiwMzxUjs+pHB0YGlTmMviA1P9yt9qSTZNitHZprdqu7dDRTUdUN1pZBBuj0MFf/Mn/UCY/qr7ePkVUkZdhjJYbKvRRU5NUsiapN9x4aRDTPNxf0dl87MrZpOsm4mQR75eaOLlpcjl6Ttc9+3Xd2tpaHfjuAenClBrXt1bO1C3GT6jr/vjOR/TDb96p/oF+NTdVvP2mi9GqLWxtWXSyFgtKE4O32e3/70xqbiwdCqf8ttWGe63IuTwIyy4SlMHA+RlbLdjtYbAMkDBRumzvelgpsKAwA/AzdilxfVbKaRcg8EWbAD99BbgoX+4Xz6Kw8bvL5+VDmW31ssuEAWsXF+8+2zoY3vFz9j8TOt9BoIyBAegFh/vi2AC7InIfc+e4CsqDwJ06nWewaHp+mD/G3ZYkux56PgHhZZddFliHHCeFIkx5jIsD4emHD4SmfTADu8aF3U/tPkH72Z0CcIDeQeS2EJlp2zIZuLONCTzGkNg7x3uQCc8Jatx2rre//e1BzA2WfuIM3D/iD0iJTvseeuihoB8+x9Dt8yHkZrKmyTCT5jfuscu8BYAtnVzsTlGWj0LhnDEyq9J2zw/9tguhacJYswI8FUZ5lt0+LHq0kWyA4aNNjFHaxuITGqMdMFYWuE4YYIyizJt+JmI0bBm2m6PdiL1woj8WOjBj2mLBPxVGHcNkiyff+axRBIUzM84VRh1TaQVhIkZpKwKSvjq2ajYYdSyo3YatSPCMY2xmilG765mXGKN2/XJcDGfqIawYO7vlmrczTm6js45CXxgtToRRnvva1742jpF3v/vdQTsZc+7x7gDjwNE+fAafLHy/9KUvBYqSM3aCaY59oa4wRm2dZyxOhFHqdfybE0qZhugr/bAV3sIbeQPNhjFqOWglbSYYPdNyNLlitf507y79WiKrF3Kl4zCaHhlVFqMOScciwUkMU2M0HnilHodRdtMyx3pV19p2RuVoLpHQyqNd6maxM+a2PCuMjo7qQE1SAwf2KxeJqhYejtvkUEHxxhbVzAKjqfb2CkYbG5XL54+Toz5HNNm5Xx+qKavc26f+XZ2qaWtUTbpOS1sapNp6rVncofMXHdY3XtqvI4NDyjU3atWFF50Uo60dHdp5/dXK5nO6ff0yldZdqvp0Wo8984QWtzSqrb5G2RFc8GO6+rJLNIRXRbmo6//oz/T0V/9BC3t3aXDPTj2886i6MyW9933vU7G//ziMDh7rVSGbU7y+/oQY5fX7X/hOMG5Ll68Yd8G1HB2N1eivv3uvMoWieoYyamhsVF19/ZzI0XypoOwb6hRbUqGz7EuVciditH5lWmtuX6vGhY1qWduqQ88e1OHHDqsmebwchb5GRyr66kSMHjvUH3g37H3ywJh8YdcypcvefKl2v7JXR48OnZW6bnQ4qiOHj6pYLCkaKb4mdV36OzBUwRb9eb3pulzNqUaVdpYU2T2o9oa2IN72ZLpu4E1Vrux2nwpGq75j6xTg3ta2pdS7FxMDhQPhMuauYauGB4n/PUjO4OXdG/u/2yKDBcC+6Y7tspsil3dXHGNhFwlftq65nW6PhTn1o9iYIQAeZyJ1xk+7FfC93aEhegfFMzZMll0mDVbHe9AnyvUZjOEgfVthwglAgpilseQ7trrbqmk3FiszLsPj5RgQL0ToI4oazzgu0vGPKG4wr/AOBH2hD/TPiq/fbeni8uLVdGHLE797gQNToO+U6zHxwsDMmLJtcaOvuH4x584aSZ8pMxxT4jgOW8muueaagOGyywWT4PgSX4wdO0C4PDp1OzuRtOO73/1uUDeB8HwGqE7c435TN2P/Mz/zM4GyDaMNu0l44e74C58B6jlgTKy08r0PB3/nO98ZPIvFDCbnXSljIQDqmALsXULjzoxvMozavYZkAjBdx1hNxCi07XPqqJPdMuIfPZfTwSjPMldWPMIxPF7UhjHKwtkuPlbaT4ZR6rTl0xhl3p18Yy4wSn1eJJgXTcQo42pruuNPZopRnmXXEKHLHDjZhHkeFlZb1aFPnqMcJ9E6GUYp3/FIxiiXDRk86zNcTXOOYbQyRL+om51lBCljdDKMcllggz2OhSBm1piAPn/hF34h2IX9vd/7vaA+si3zziIWwUhSC2KImF/wPRGj0C20QVk8MxVGuRhL06wx6nGyy5X7DO96z3veMycYnQ9ydKi+UZ/tOaKRwk/c56iTjMXFSFQZlORQH04Vo6U5xuh05CgKVurQIeXJsj3mkjtjOZrP681dB5TIdetzjcuVwcVQZcWzObXEojrvrTfPSo4GGB3Lzj6ZHD18aKF6e3Zq2eI2NYxmgkRM5YFBLIiKJJKK1tTomjVL9PTug7q/L6YLVp+nlV1d08JoJJFQfSGjHaPST199jR577FGVdr2kyIVrVI5G1bm3S+1rz9e+B+7QcMdyrV+7Vjv27Nf6d3xAzz7+iI498YBeijUrkUwGSeEmYvTini4dTqYUXb36pBitSze8CqNhObrvKFl5U1q8ZLGWLF02Zxg9FhmS8gkV9w0pWptQOVNULpJ7FUbTixuU7kirFMjRiBZevFCHHjmgfC6vpJLTwmixUNSj33pKhd6i8qN5feOvvqObPnCD9u86oK59XWetrhvI0QNDgdGETNxnWtdlN7y7t8IzthzaoUImp+VNi2el63Jd9bbLNHhsWFue2qaBvoHxZIWvJ12XyxgdKAzMma5btYUtxE2DLXzDQLXllEGBkA0mx8jZV9srcU8Sg+NJs7WV/53owxZhvkfR43nqcQyad1K8mjfBO3udrbgGkK3xJkT+D8ePOeW6LRfeYncq8rAAt/+/A7753nW5fCueJpaw0LcSZTcZ+mXLmwVj2HoRBrMTMpgQfBC0iYR+OEMc704hHraEwbDoM4SP6wLlkGnWiVGow8YDlwsAeRZlAgbBeOCSQbIb2mxmZMMDdXs8fK4XzAkFlrrcZjNpzwXfY9FxwLxThdMf0xkv+hOOA6AcFGASRWBVwwoWtmDyPFYrmPFb3/rWQDFnh4oxgL6IMyBm0C6zlGlhYjr98pe/PL7Y8bh4YWjmabcf38dFOfSDnR/qZNcKhoEljXM9qT+suPK8hRMvxoE5c0Y8M8kTYRQXYC9yude7c2GMUj+LGeaHubSAdB+mi1HTtjEKjcCsbRUOY9S4s0VuOhi1VdZ0PNcY5T7G41d/9Vf1yiuvBHQ1EaO0yWn/TaezxWjY5cdZMW3RtaXcVnrK54gejxsv3IPtGjYdjHpc7E7Fb3Ytt/U7zFvtpsQzCFQvrE+GUffpyiuvDBbFnKnHeCP0vDuOq/LVV18d0CPlsbhlAcwZpr/yK78S0D/PToZRjAGOdTpVjHoOrKRyH4oyMUtzjdH5IEe7G1pUHu58FUaF4ks5Y8lLTopRFK/BwdOG0enIUVyRD6XrVSYbNMrxmHFxphgtFCo7FZHYWCb/MYxee7RTjR/7uFZfeNGr5ChH6sSIIWU3p1RSc+dR1V/+hqCeU5WjK1etUi57VEkUyyWLlK0j6VJJpXJJ5XxOZXbIIhFdvGyBnjnYq7379gXu4tPFqGJxldqXBTj73je+oQ9fuFRdIznFGN98Xocef0jLn75X/1++KcDuv/vlT6igmFZuuFBrLr5My4506smnJsfotgWLFSNmcoYYLY29Fi9epIULFujSN7xhzjHaWK5VeXdZg0ODKsRLakk0TIrR/Y/uU+ezh7VgwwItumhxcBRSOSqVs2VlytOXo8d29o23mXp+9M93KU/sZyJ5Vuq63HdwsEv7yz1KFeK6sr7hjOu6X3ryO9qRPqicChpZn1N6c+X+2ei61L/p0c1698ffoQuv3KC7vnFfsAN/Tte9eE503aotbE1ctkAYUB4IOmmLrS0fFqbe1QgLYw+WLRJ2gfL3fGcCdbazsLXGQPLlRa7Lc1lWdjwJtoByGZzeNeI9nJiG/lCPXR/Y2ZgYDM548Dvl29XB6bndL+qxO4L7YuXUQHQbguyAY4pmmGEFVsF0JR22j6Rw8D2/eZfFVjlbWEwYtvZwn9OYm9miuFMWFhTKxSrnQHjA5ToRZAAedwIf7UBZzuzm80CdedNggZDpp88mg0E4ZsJKuHemPDbhGDanlPc40RaYjd2W3D4YCLs7tMlB9cTPYT3keepFYFOeFSPaCXPixY4QZ4EBQH4PMxjHhth1kX5454N7nEHW82K3GSvt7LaR8IYx5jkOyCbLrV2UYE6eH1sJLchoJ4q7LawWjHYHORFGrbB48TkVRhkzdnctYHzNFKNcHq/JMAr92Eo8HzFKWSxusHpyP3Pl8TdGqTcc71sNjNqC7YUzv2EgoJ3Ui3XUCgvuhQgO2gjt05+f+7mfC/rM8Sh2k6bsqTBKG8CzjzIIkrgUCuOuy26XF7VcfO+z+aaL0UApX7kysBQT80OfWOT+p//0nwIhy/jynHkEeHzjG98Y9Oub3/xmYIEmyRQ7PfAr4vvCGLWr8kwwCk0wlhyn9Ad/8AdBOVjCOWLIwh8anSuMzlc5Wp/LayhRnrcYnY4cpd4ULqXs6ozFGs4GoyUWmrm8ImPxbv7tlQULtWDvXvWMjAaLXctR+vKmfXt0eVR6tL5BWUU0uuOQ4nsOKXX15Vpy5SJlu46qu6t72nJ0rxq07fCAfm1Vg2LxmIo5YnIjKtWkKqmbJb15w2p99emtp4zRmsbGcYw25Yf0UL/0+5deozt/+ENF7/iW6uJlpVNR3dq9T12j3co/8H013vJTesOFGzSMm2M+q49+9KNB5tmJGG0mLnmmcjSR0O1vv01btu3UL/7SLwUu4QcfvEPf/fT/o8eODio9Fgc4VxjFpbhmGhgd3jWsfXv3jMtRYrBng9FSqaxsJhvs/J6Nuu5IZlT7yj3KxorBkWGlaOW4wDOp69Z0l7RoIKWRAkdGNSgXqeycz0bXpQ3dR7v14tMvqaWtWSvXr1Cuf1dglH4967p9fX365y9+US+8+IJGyhl11LVWBaNVPe7HbiIG18R37zL4swk4DEYGwANh64+TtXA5DsHPGJg+osFWI1vXw66M4WB5W0TMmMx4HDtoALkcuxXwm339udcZNT3ojhuwiwNt9U4SADCD8KLQTMvKYjg2whYSu9AxFrZ2US7Ko0FpEFEXZdrP3mPgdlnhsVuDCSZ8aLUtO9QFA2PXyeeUGUy4LjDWJi4HgfsMTQLXfVwG/cQ6g3IKUTq5l4Frhcxxl7zDIACYmSHtsQJpoREGDJ8pi/Z5MciYURf/A1TcG2w9gyFxsVhDSeV/XCHok7O+2mLG+Hu+iUmgfbhS3XfffUFZ3MPY27LqGBy7kjjNv+nOC0naisUOixnjCxNBiUdB4aJOvucdtzW7QPocVltdjT8vMEw/YXzNV4y6zRPrYLzsYjIZRsO7UWcCo5Txj//4j8fFtUyG0SBJwpgldbYY9bE4XMaMjwyAtqE78y7GioUhu6bcR7wN38EzMBhwbJAzCTPWCGrOqZsMo4wBLtCMDQqpFRYu+kvctb03HOtnYX4qGCWW2xjleerjHTzAR2g7R/g4FpjxoI+0ByFMdm7iicjo+MEPfjDwSJgORu2qxlxZ+DLOPkIGDP7+7/9+kBCLscbSTT9oC23mwqrOvL6eMDpCEpsTyNEzjdHpytHAnRUX0bEkOLPCKNlFg7mKS6PDKscqY3EskVDfvv1q7utXyrGIQ0O68JJL1JnPKblti24cGdJovqA9TfUqxKLa9uPHtGfzVn3k7VdosL1VPx7OTInRsBwdKpR0NFvSyOiIsql67RkY1d8/tVXZYklLm9P64Bsv1Fef2qJssaxU7cwxur69QSMtYxjds1tr9+3R3c0LtXRJWucnitoYGVH+qcf0bHqx8k3tSiXi2rD2vOA4m74liwPsnhJGMxkdhZ+GMErGpo7WFrUvWKC2hUv0c9deH9Dut77xDX28eFAXJKLqjGQVW7RoWnK0MDKqSE3yrMPo2arrNtSn9daWy7S3+6CWtiwKdrJrz7CuS+x4ZjSjlli9Frcv0vJLlldF1yVR1nP3v1AxKGf6FSvGA3n6etZ1d+zYoT3xLhUurFMyFtcbMks1Ojw6azla1YWtwRoOTHeDmHQqD//m1OjeZva5hBCNXQjCjMTEa6sA3/ker9jDBOutfX9vqwyXgWmlk+8hOLtgWFj4eWew5XfHV9g9jO+9g2nXE/pgBdBKnsFldwmnZuc7iNuWpnDKeO+QOMbN7XW94RTgZkxYQqzchl0PPDYeU797J4Q2+9wq2sBlpQ/llfnhBdODCQAQ+9FzP0TKvKBEcx9lci9uEPb1Z0zNwOkbdMF9KNuMC/UBcpgCzMLMP2zFchyBrZcGsDO1OXbD88xndlacNp42s5PFHMAw3RbaDA0AblwcfcTG17/+9aAsBDG7dPSRhQFAJQMsIPUc2d2N3SRiBWzdpe2MF21mfphvnidAn7HjqBN2nXwuLHWbWdLmcCyJBaZjVzyPdhH13FoQzmeMulx/7/Ybe5NhFJwQkwFN2vp8ujHqZE3GV3jM5gqjPkrBMTZhC7wVHZ+LCA2y2Dr//PODe6Bpdl2hSfqBYEJJtbDixeKW8Z0Ko5SB9deujz5CBQusXT15gXnHDs4Uo/QZa7bbxu4O3zNnjqVzWdQDz8ANG1cwMirDg/70T//0VRg1fYYx6oU7/WTM6CsKB+PBGJFcg/6gLCDg4WPMAWNBebh8YQEPY9Q7AY45Mv+ywmcXr7MBo8WhYTb8goy8Ac3jGjYWvjAVRkeGh3XNSJ8ejyQVqUm9buQodF0e6tPAwKhKrS2qHZtnY7T72DE1otAfOqBkOq2dL7+s9xzao5pkXPsSST3bsUijkahaLrxIS1/YpEVHu5RI12ndohbV92f0Un39CTFqORocQRKVPre9R/2RpGLtSxRhF7NY1l8+tk2JZK2ax2LJZ4pRVKm16yoYHclkdWc5qWHF9dKaN2jdkTuV6x1Q34E+PTdyt+rPX6vHd+4O3Nd/57d+Qxect0r7Dh4OjEXTwWj7Y4/p/OFh9UajevoNb1Bdc7NGR8jK36AVy5frZz/28YBWLEf37d2ru1NZ3bioWZFYbFpylDqT6XpFh4YVgb/U1Z41GD1bdV3L0fXLzht3bZ5rOXoyXZe2LWxsnTNdFzkaxKnWpV5Xuu7VV1+lwZHBcTnqXf9Ca0HRckQdr0SVOC8h1eo4ORr0rVxSLp9TpByZlq5btYWtwWRLqV0h7C9uK0/YBdLJVMwkwq5Xdt8Iu2hwnxUCWwK8Xe2BcHnernfHw8QSbrPrYgI9WL7sxmB3ELfHDIb+GFDOqBnusxmXD22GCL3DY8uV3RWtGNoFzIzEbl7ho2EAFmX6cHIn/rEFy4d/22Jna2DYguf5ch/4HmBSFhYXx9TRZgd7UzftwA+f2AJb9fgOAnRmXPpBGxwHwoVVi/txh4DYnWXNtMLYca/96Z1plHvtLmmXGgOGNpqWvFvlxAC0yW5ovLDK26LnNrn/tlxiZUNBBby0A/B5wRBYgb/1rQCM7AbRVxYNn/rUp/S///f/DhYNzqZK8huYAQH8ZBumbsojuQf9hCYAPu33TpOzq9rVgz7TDlvDnKQhTCN2Q2NcbYk1XqBn93M+Y9SxFManBWFYSE/EqGMx+Y7dPOqzVdbC52zGqBf6dmkLxz+FjQETMcp30Ai4gT6hSZ8RTP3E12It5TM7F8TVIODIQki9CNh3vOMdJ8Wos0muX79+PHvwRIz6+5lilDbTfv73vNIvzzP9YEHN79SNkEZwsxhlPFiY4jb853/+58dhFFcz2oNCjXEELCPMUUScrIV2ca4ugp32s1trgxP1UD4KATu3jtOif/TJcccuh/4xzjfffHOwO467NHFPtPmswWjsJ8dvBbROe8jEOaZMTIbR5f09+lBTSvHhvB4YOxopi2wIJRV5rcrRYn1K+VSNSpoEo+yM7d+nhaWiaq66Rs0/vl+Ly0UpEdNAa6sWXH/jOEazwwMq9vWrbySrwR9vUqosLdig6WE0kdAX+kbUtnajlswVRmsblO2tKMuM+eDCZXpnz14dLsX0yqrL1PD0t1QeyathV69ijz6mNbU1enzFSv3eH/yRrr/uWn30pz+o3qOdalu05DiMJuJRJROpgL9s3LAhMCCNNDWoPTMqJeNasHKlig0tqkundc011wY0M1GOsut217G8ftDTXVHaRw+cUI7S/yV7DqqvtUkr+oa1P55QcuGCswaj53TdyeVooVzUYHlUsbxUH6/ce07XjZx2XZf773riR2pYUK9XjmxV/1BlcQ/d1HdKqb6sIqloMNaWo8HOfmtKV7/njYon4krV1ahUKOuRrz+uunj9CXXdqi1sDajwIJoBmOAMDlukPMkmVt9Dh5lwK7cu1zsUVtT8uxULBsNMNuxmYCbkyxYqg8s7HN4F8YBDnEwSxGYF0+V514I6zaC4x64nHmiIhT6iQNoaZUWNNkE04VgNwBWOd7DrBPWZuMPWQbsj+mBkxw1599MZ2kzQZowGjS1ftI1FAn01SCkb4CNoDWDay+9YYPgeX37ahcDweXLUyQ4L93r3kX7ZCsf9Plib+gA1bbH/P4Rtd0YUVZ+hahqw1YmyzVS5l3o8JqYx3t1fxgAQUB7zwf0onT6jjL6wQ+NU9SivtpR6vDn3i7FikUBiiiBBxr/7d4ELpGmVBAT/8i//EvSLczdNB2beMLq/+Zu/CRgEY2FcUC/9tnWXNlA/Fi67m7hP3omw9Y728RvlwIToB/2EEc1njFq4umyfw3cijHo+YZ70kVgSx7jYledsxKgt1CRIQtghEIi1dkwJLwSQdwMmYpRnoR3ojjbiKst4gk1+A1fGKHWhCHquseo6FupkGPXYQL9zgVG7RvnMPjCKwAM3zPG1114b7MwinCmH/6F53BqtcGFJBzdkUSbulv/pD+1EUeaoq//r//q/xr9j7pnTX/u1Xwv6TF1/+7d/G/TRxxUYDzzjhET8FnZj5kVb7LZNn7Ggs5CGLxCry1iyKD9bMVoci807EUaHGppULg7qg+mILioW9flIvZr7+9XLrkvI0+G1JkcZyS8n0qo52qfSipZJMRpr71AZ9/8f/pvKNUm9tP7iAJu969arHMLoULxGbTdepWOLF6qwYFS688cqr0+pfpoYzSVr1TNHGEWO7iuUdVEkq9GRkXGM3jPSpviLL+iq62/Q/UuXq35kSMlEXDUHj+rSaFHR/l6NxpJ64N77dKjziG580zUBPRTK0i03v1XPPPOsiiUS23UEGP3+d78dzPlFt96iXH+Pcg1tesvFl7wKoyeTo8UxjwvcmVvjFaNEtpDTSOwnu7j9ixconslquC6lumJJF1566VmD0XO67vFytL8wpIEVEZXTcZUa61X33Kii2ejrStcN8mMs6Aj6Mx903ZqWhG567w26+I0X6PwL1urOL983LkePHD2ii966US89skWZkawa040Vw0csp+3P7KwYVUoVWkqmEkpETq7rVmVh64l0TA6d88CHLWMeECaMDlkgGDB2jTMofK8J1szE5/zZvcDB9PbHNrOwVY17HUvgdnjw+d/ubbbMGOTe0g/HVJjgbBkzKJkkLoiY5yHYcOC824TSCrHahSNsxTORGnS8LKgo164btCvs6sCEm7mHXeHMNMJzYWYcxPmMWbZ8NqZ96C2ErbShZPM/nyEmynUacFvJADhKI4q4D3zmwm0DUKHUoZDaKubMadTJ7oljL3yosxmdd1JslbNbjS13BrHBT9/5ztlEnaEO8FH3T//0Twf9sYuHGTPj9+KLL467lNkNxPNrFxv6QbwCoMWKRVkf/vCHx11mSKyBtY7PMAdAh2XMFlTGh7Fz4Dt9YixQgI0B72LSJ9qCdY3kOjzjREB2/fDcUT8xWIwl9xNr8VrEKLRpTDIHzJOPSPBuZ7Uwaheg04FRLt5xbbXlGlqxkoHw4TJGUSAmYpRxoFxi4KFT44WFFrgyRrkYRzBB2SSSAGv040xilD5g+eU3Fn/ghOdQDpyFkgWslTXGh77zDDjBtZ/2g0/Kor/s3P7u7/6uPvnJTwZ9ZkGM8sD95n+MNRhlh3ciRumvjzRwEhfTLOPBPNA+u1xRHs/Sf2MKpZo2Mkbcw+u1jNF1kZJqYlFlCiVtHc1pqCzVtLcrMlbua1WOBhgFD2pWXT4/OUbTaQ0tXqyuu+9T8v0fVHZwUL21abUvXnI8RpcvV55YxAULgljSPT+6Rw0dberesmVeyNEP/+zPavCFx9TX2/MTjK4+T3379wYYbb7komB8+oeGNJgraivu7MWiVh/Yr5sW1evfdm7TF/fu1S1vuUmf+NhH9PzL2/Txn/u5gFdZjr6w+eXg845de8bk6GP63g9/NGM5enE6qd/qqIQv7B4Y1mcGYqrsSUrJw53qam/VYHuL1q5Z/ZqXo6dT103Vpk6rHK0pxbVgX1TD5axyyaKaMrUqlAuvG12XPrzl1jfr2jddq879R+dE1926dWvgATVdXTe6P6rMcEY7X9mtuvo6pRKVjZnAuNBQo41vXK/FKxfpxR9t0cYNG8d13WJ3UYMjlR1cG3MyydwJdd2quiLbjcGCy7sKYYCb0TjbIpOD9c9WLFuwTMw8YzcL+5ibeG0Rs1XKiq3rseDhZWuVXTi8u8V9TtDjPoTjI5h0g5rvqM9gdlku10HsZmy23mHpCu+o8M5zWEsAMtYe32cm6Ngxyg67bplRmcmFQWDGY+bqsbDVDZA5rsRC2q4kZmbMF98DfojYTMpzRVkIbxiWU3YDcmfzhdBpv2P2AC+Ebcbu3RjKYUw8F5TBeDgOw4H0AIrxMSPFUsZOjl1YmB/Puy3nTmTDuNmKxZzZGuXxY+yx3KGQUi9MBmbmMXAZfHa8K+22ZZDFAHVxxibjAE1/kQxvL7wQlEG/UWZ5Bvqy9dW7qxZodkkxrVtZMpOhHQAYJYn2mm55Nx2aNlH8yd6KlS3savRawijjz9gzf7TRbXPfqoVR7qUsrI0wbGcvnCuMUpcxym8IrYkYDZczFUZ5cag6zJ52Ej9qt66pMIpAdkzRmcYo39FW6gKbLPSNUeY7jFFb6hFy7JCiJCHoeJYxQFmgH3wPhnm/9957g75MB6O0k3HmPsbTCTKMUfqA8KYe+m26t9Lm9hHHFHY35N7XMkZ3Nrfr7/p61D3Sr0O1zWpEQWaXivaMKWavVTkalJPNKVJfPzVGyTR/xaVa2dioUneXlixbpsgY3U+F0a2tbWp88mk1L11yxjFq2synGtTasUD3PfjjKTFKGa1vuESD/f2qq69X52heTdlR/XzXQd1RU6sf3nWXSqWizjt//bgb9lzJ0fjqNeof3h+cx9tblJojJfWM7YT1LGhTXeB6W9Li3dvV8p73vKYxerp03SBs5Yp1iiWi2v9SVKma1GmTo/WRpGqGCipGiq87XXfP7r26EE+lVG3QjxPpuvl8Xje85frgrOSuo13a/OJLwRFSU+m6yFF2bjHYTgejgQG4qUEdzQu0N7pf8UgFc8bo6GhG3/yr76iciehN171p1rpu1Ra2nkQTRtjaY2XLlgk6xGB4wtja93lZjkUwwwgvMAxgg8bgpB6IwQkCKD/MzDwYvgx8gzlsdTUzoRxb4v2bCZZnrGCbKFyuLWIQHm32xHCvQctniIMJccyHXUB8LIFdR7icgczjbKK2dc2MxS4kZjr2g3ffIW4zBu4zczXx2VLjsaMcxsDjwQuwoTjyHUAkcBylwozEbhPUwTi5Xx5XpwanXLtY2hUEsPHZh4C7n96Z9Fw6gY4tVGGaYI5MKwZW+FBxJ4FhoXjPPfcEOzeOI/G5oLa82sp5yy23BO6OLHCwwmERhuFwYZ1CCOOi4V0D2sAYMT627lr42QXHAs2xgyjN7MiSKY5xMQM2Hlh4UD9zaEZuS7H/p26YFYq7FyqzwahjauYDRr3AoExojbHlfsbOZ+h5Hk+EUbtpTQejlOG5g47trnUmMcplS/ZUGEWIknjJ/BWhy7jTrqkwGj7Tb6YYtUV5NhilLGLrcEPEzelEGOVZFu38hpD79V//9YAusPJSHpZzhC1Ky2c+85lgN5e6wDBtNEYRyixMwxiljygu0BXtpQz4gDHKDm7gPjqW9ZJx4H/KYzy96PY4B66hY8dPUC71VAOj802OBolXeo9oVaSs58sxDTa2akFTUwWjAwMq4NUydlzJa1WOBhhtbTk5Rq++ujJ3K1aqJd2gkfxPFPLJMFq/ZIn00hZ1RyMzxujgsWOqGXNjrIYcXbvuwmnL0dvf/nZdsHGj9u/bpwe+810t37ZFH2qL6I/zeT306ONaf/66oC9e/M1WjoLR5nS9LtqwTpFoVA898bSO9PTq07m4hvvyysdSiqeSKoyNcxSjVW2tiiMjeiyS0NFqydHE/JGj1dJ1i+WiIsXItDDa0NigG99xncqRsh4ceUQDnUNnHKOvdV2Xsh5/5Ak1ppv0wQ98MAg7mgqj2VxWn/y1XwzclkeGRlTKSW+96eYT6rr0M5vPHofRdGNaQwNDr5KjGy/aqDXnrQ6SRz1w/4PHyVHruoHRYhjjRqwqum7VY2xtfQlbWsIMiXscGxhmBN5iduINMw6v9m3NskuJgcxlVw2uiUAZt9SNWcttDaNcK64GC0ThQ7UhNBMQAPMzfPb5mnYnwXUGEPAbhO/AeTMfLgeM85sD9SEOB8XbF98gdmr1sHuFdwusJBm8ZiK2etEunnffXWbY+ucrHDPG8z4c2/PIuEM0HieUZIgdixPjTjsQ0vQhsHqOHZzsfqOkMife8aQMx1GyUGE8fJ4fL76jPO+88RmFkb5Spt0xPf5mZmZyduUxw3GyAscn0FdnNkXBNAPlMlNw9j2eRbm+7bbbxl08ieekjfTHdeOSwZgQx/f+978/SB4AYF0OAMQ1lHsdrO84DhbMpF5HcUY5B6g+v83tt1sOY2ELn+fetGBrJmPFvMAYsP7NBKPhWBHmk3Lp/5nCqOmQBAVgjf+JH4XxQufGqOdjKoxSPu8+j3kqjHqhFCQhGcMrZdCHsxGjWGnDmS7DGPV4UR70QnsRuo7nngqjjJXpwRi1BRZszQajKA4IK9rusibDaKCojxk0KJc4YcYJSzLtIckOC3zcqcAg591yhIGTXuGSjPJLOfSJeomFxVLM3DjuiP4zlvSFnWEwavc0K4jOdImQh3Ymw6j7TVtZfM8Go/NWjg4P6d/XxVQuFXVbuajvZQe1pVxRmoPYOM51PAFGpytHlctqybED6o4sfU3IUeQDdXlXeCo5OrJylXr279Ohnp5AZpwqRnP8n83OGqOWo1s5M/oEGJ1MjtakUrqjrlYvJFM6trtfyxfUKFdfp+VLFuuxRx7Re37qp6oiRxmb3/rln1Nba0twfG9rc7Oe37pTC06A0cDFHD2jChjF9XX1lSu1aN1CbX9ip47t7Rt3YT8TGGUQ0gvrNNKbUVtz24x13cblDTrvpjU6suuIDj58+KS6LvTw3IMvatnaJeN9eK3puoHBoD4TuNdCt/NB1w2SKG5+KTi66ES6bi6bU11tnRrSDSpkC1q3fn0gf0+k6za3NAcLfQzLipVU31Snq6+7SvlcTk89/ozKBQVylPpuvPF6LV2+TOn6Ot3+jtt0cO8hLVm0dMa6LhmS+X9gcOCEum7VjvsxoRnYBh+TBMPBnc9xATTGW8t223IQuF0AuWzt8yRCBPavD1tv7DZmgjYhuy1h9wxv5UO4TJitHZTjLGuAxQBlsG2dmRhvAxCYeBLZeCKp1zEH7p+VI9KB44vuM66cmdD32bXClji7XTiewwzHQfMBYY4FfdvaR3keB55xv8MuK9zr7Go+MgXQGXiU65gy3uk/deDux3e4UwBgLDWAxjtpPu+WurwLxP22qHpOUCi9w+N+8zvfhy1z9HPi/FuwUq6VdQPfgsbzzsupzM3YYDabN28eN2TYeudYEVuMqQsrF+1k3LFcmQY8LrYkemELLTCvzDUXijC7RjABwAeNfP7znw+OFaG97DbwMhMmpmPTpk3jKfWpy7tg1McihTnwmHh+vSAzzfCckxCcKkZRIKAD9xEmhyWctluJPZ0YNRbt6sTY2Q3HmaQnxqNOxCh0SZ/43/Q9FUZhpJQJjpzsge8o19kYTwWj5h3zBaOU4yODEKT2DuB5svZiSYUOToRRMGTXLlvZ6a8TZ8wWo4wP8wympsIo84q7It4X7373u4NxMkapl6M/qBMlnjqhY44sIDuxMcW9NrrR9t/+7d8Oxu2zn/3suLLjHXJwSQZIMMq4+OgG6jA9gfHJMMqLmCz6hlJtmTNTjE4mRzOc/dzUdEYwajlazGZ0Z7akw9GEjqbqNVhfo7bGxnGM9nZ2qjDmTjcbOXp5rktrS9L/OtClHZHYa06ODhw5qpF9B3X+LW8ZP9oqoIFkQu133Ce9+3atvOiiE2K0n2yqR46qduECDfT3KwZWDx1W09IlVcFoX98xRXoOqX7xqhnJUTU26pXVq5UYHdU7rnmjSuDh0KGgzmrIUer71g/v0i98+ANBvTdcfaWeenHLaZOjxwZ7deNHrlMul9fGN2zQpc2X6c/+85+rv6//jOi6yaaE3vrzN+iVJ7dr7xMHZqTrIkfPv3Gt0kvr1b2ne1q6LjxyYCCq3v19wWfXebbLUeu6lNvZ26nUxTXKDuTUc6xHSxYtOWt03UQioR8/+JDe9b536mhnl84/b8MJdV0WtytXr9A1b3qj+kb6FCWXwuio0nUNGh0ZVbq+QZdecNm4HO3p7dWSpUsUTybU3NisfC6vUrE0I12X9Hxv+NgblO6o177n9unoY12TYrRqC1sTlOMOTEDeZsbiiPXcOwQMPjsuds/yyt0gtiXaE2kCouywD7xX+2EiDlvRvNK3JcdtdWY/Ew1lQAQA2/dAJGYgdtOwC4CTJVAHVizu83lftMOB2nY5cfA4F//DtO3eYSuUXUDCjCwcb2FABodIj7mIhAP1HeNBPR4fl2VGHGbGXnwyLrw7Q5q3/MM+7T5LDUFiS7EtQwgUFhUke2EsuMfWSFunABepwWkbOyX0GaXV7gbUz86KrY+MrTOVmtAdX+Bzx/gNhdQMzS4Ktor6Hs+lXVo9RgauDwt3zIMZEu8wMhRkdmJIiOFFD8/BmLx4t6IKDWHpxXpsFyLiALwAs1U0HCNoBZr6Ccznu7vuumvcRQZaoX4nAHLbbHELx+l458a7ZzPBKJZImBIX5bNTyk4W83MmMOo5gcZwf2McTA9hjHo3djKMIoQsMCnHNDAVRp11mkX+TDBKHU7qAF6cgn8+YJR7EdLQIdjkPtoPPfv8VmjgRBjlN+/qIrStqJmeZ4tR09SJMMpvWIxREugz5wcao17cgUtbwr///e8HffM8Mk/0wdbyj370o+OuX9RPtkXwT1+5wATn9Rmj4JJxpCwUHdrImDo5SRijzBHj4AQrs8XoRDlKZtrz+gd1uK3tjMrRZHuH7unrG0+akhxLkmKMNnV0TInRU5Gj+az0bH9OxWTFUPBak6OrV63SXX//j+PtHt/l6e1V0y03qaHn2LQw2jCmuB59fpMSoxnFa1NVwyg7PfV1CQ3NUI6m2R1LJjVSKOg7DzykUh2xgZmqylGO1vrPn/7rwMUxly+qraVZtft2anC4Iq/nUo72HuvVaFdGjYsaVFeuV00yqZ/6wHv1xS986YxgtKY9Ebhke2E5E10XPnlse7/KtWXtemqPspnsnOq64CFZk1RX5phGO0pqPpKYd7ou2Mmuoc8JxVvievKFJ/WJDZ84a3TdY4N9emHTixo+P6/+V/oVi8ZPqOvS/7e+7abgODPGpKm5kiCvckVUzuk4OfqVL31ViV/8uK68+gqVVdaipQv08L2Pz0jXZXx69/eocVE6wPRUGK2qK7KJylvrtgjZRx2mBDBoNL+jRHlwPeGesPAq3UTPb3bVAJT2S3csR3iyzBhsFXI7GMhwrADP+OBkCNpubZSNFcDuHmFXEbsqeMB5PrDadHaOu09QL8zZDMO7PVhCEFAoXHYrMXPyPbZe+GxK6vOkUqd96inbadvtjmEQus9+Lhy/5Ex8Lo/fKJP54TkH9ofn1MzHmX8ZL/oCICmTtuAeFMRYLVwYgILfGQ+YCGXiesDuil2L7N5n1zMH/dsiZSuR3UZRRGBG1E073XfThd0zwtZK70Y5sJ6LNlM29ZqJO7bE1iwLLtr1wAMPBM9AD+6/6Ts8d75QtGlXsEPR2xu0gXsZD0Bs917KZ/eInRzHPzI+WAcZK9rhuWRhxD0+g88JdmA4jr+xQLBrqYXLqWKU9vM7u2HQNAYJW1XtxlMNjAZMJnQW5lQYNcNn/GmfFz6nilHmEAXLFvKpMOoYnMD1b4YYdYwNsaLcD+163GaLUR8sPxOMYhiA/lAa4MP877Lgf8w5uyO2op4Mo/TpuuuuC8rj7DvaXQ2M0jb4iBWsyTDqecGySx3f+c53KorQBIyywwOdeJfZiiNt42glaAM3ZurE84IzMRkj+okyze6QY5Mcj8z9YJT5MJ54py2Ui1CmHuSdMcruKn1iLt3OmWJ0ohwtwE8LRe2fA4ySyTg2Fss7HTnK7g/lzQSj05WjTxXr1DnYp1wpMy/laH9vj8rl0ozlKDz4bZ/6pXGdwXKUOg7292vpS1s0tHrl9DBaKunC/QeVGs1o2ztvV3YsX8FsMdrc0qJB5PMJMHoqcnTX3r1qbq64T0+Uo/A8u8ueqhwdGB4ex9OG3a/o1lRUB3JFHc5F1V+XPg6j1ZSjHe0d6tvdp30vHdSRziNa9rEV+sqXvjK+MDvdui6GiEKuEOyYzUbXbSw36pHPPqbB/sETytFq6Lr5Ql7dyUGlblqo1FBO6h5RrBw747oucnP7ju1avWp14OK9K7tLyknZl7JqzbSeVbpuTSypbD6nxw+8pGhjTDu/+1nVHY2eUNeNRWOKKKJUMqV8rqDtL+3U8OCw6lNp1TbUBmNz/30VOcq9X/rCl5XJjurW228J2oYHSViOnoquu+2+7VpxxfKTytGqLGw9OVRmH30fwcFvNIDMWkwwgg/we6B8wLBBZcuZCcyEx2fK9MSZuE3MnliX4ytcRjgIGQFqa1vYemeXEMrzQcEmLPv3e/eHz1hfGHRbZKjb1i+32ckWbGFxm8L9NWjoAwTpjHG0AxBQHoTicsMKOBaasJXM6bu53E6DwozKv7k+uyW672Y0/GaXCBRY7keBsxJAm7Bk+SgA2oH7n+ty4hr6i4UrcNMZO7iaMgIr4LFj42PhM7/sDmpAe65tTaVMnqV8Lp8R56QqtoiZITmLqd1dvEDyyzFatsJ6J4s22lpmi6TLths9yq+tjFjn+N0JBaAzhDp9wYJnazMXDPMv/uIvgvEjBol77F5jqzvvjDHzE1jhGxrGY1qMB9O355XfbO2bKUZ9YDkLBjOPamM0rACFMcpljPKM3fbDrjGnilF+N83ONUap079ZuFYLox7nmWAUOmVxj9LnNtJHfrMrGDuAVtROhlELPCuF1cSoeduJMGoa43/KYPHorJBhjPI7ygyWdsaA5BX/9b/+18A6/LWvfS1wU2Y3lrLDcdv0hwWkFxaMGzRCHC/9d+IU2s3uMXV7nolBDGPUwtvjXA2MWo7GEgk9tmKpkmO7ONXEaKxMnlidEKPn5OjxGI2JZ2YuRwPX0bEFx0Q5ynFBu5NxtXHkRyo1LYwWcf/jqLDuHiXb204rRqcrRznSKDdGD2E5GmRtf+zHGojEg13fmcrRIp4ZwyM61JVXTTyqTy1o0J+SsThVOUrMuRSqLUePHO7Sli1b9Tv//veOW6Ccbl033h3XEz96Wp1bjqq+tv6skKPAKDpaViQZUzlTUkxR1dTXnnFd91h/r65/17UaPDaovj19KuwpaCg1pOW1yxWJV/TLs0nXzRZzShQXBox+eFFBsf2VI5cm03XhSZ2HOrVs5XL1dfWrsa5Z173xTXpl6yt6+LmHVVqeV9fz3dr6wPbj4rb/5Z++qs3PvxTUd9stt2vXrp16ausTGhoZUjxW8SxgTJgbe7zRn4m6bnY4q2MHCA37Saz7RIxWbWEbduWx4HYgswPBaSATYosBF4LE7kB03mAJ+8obOLZk2eXEoPTvtvKG73M9fPbi2RYPrEkQLwPms7RspTBB2Q3NTMtnPtnNje9dnq0kJii7b3ibnTYzFiY67+Q53o3xCqf0DhO1GQN9xdrmxCkea9/PGJsQbdFx3209ddKFMBP1LhOXd88ddxQOukfg2pUBJYSYF3Y5ADxtQmHkd2cFDLcNgvVughkN/7NoGXcz6O0dt/yh4DhLHM849Xg4LoN22tJjIeMdOb63YPWYUzbl0ne7TlpBNrMwQ/bvPOv4BycccFIA2kmZFqTUjeLMuHDf3Xffreeffz743tZAp9Vn/viOshAEJLfxWHA/bjBY/XCBdNZB2ucD2z1flOmMfu47wmFipriZYJR7KGcuMGoGbTo0ndpK7bhFY9QW1rMFoyyIaC/nvHlRXg2M+rzZmWDUO9a0wbFpYSXKscQoZdDlyTDKhYvvxDaeLoxCJ4yvaZo2eYcjjFHmhZieW2+9VZ/73OeCXWl2cll8ooBQrvFDOWGMOsEH39FXBLvdBxlDMMqZgLhvsWuEFRqFlstutbzAM4tr4opsNKoGRrm8oJ4LjBZqkiqN4SaM0ZZCXqMcW3NOjr6K/lONzRqZIUZPJkfBRr6+Ti1jx25MB6P7r78mWDhGx8ZhPsrRgcEhbd2xSx8YGDhOjr54/11at+Vh/XB/rzbXLZyVHP1K80ItTgzoip5+Rfb1q7hsiUYGBxUd25lcHC0rqrIOx5KBsehskKOnouse3nykUkaucNZgtKc1r0JfRtEnB5SoaZgXum60NqJUfUqxeFQvj27TwtaFx8nRs03Xbapv1MDdPYrnExqKDyqeqZtUjlImzx460Knm1mY9/8wL+ukP/nTw+11336XM8mGlVS8lK/MQxijHDu3asXtcjh46fEhXfOQSLdzYoZEDGS1ZvEStK5vU2NqgaCSqJ+57Sn3dfcERRIqUFYlGggzjTY1N2vqtbePx3JNhtGoL27AbhC1ZBl6QGnrMCmKCMnF6F8jB0QavgR52ifIzBoMtTrZgmZjDRGyAh5kEF+1xHKgttnZDYbCcXdGWIQPVVo7Akj3mFmKA8NmWN1vKbNE3QwwvcOzKEraumCDN9KgXpsz2vM+3NJPjFc6U5tTrHn8zz4mM2JaxsPsKl+fAriX+HiCj3Bn8EDzKHc9jOeV3gI8yx84HdWDl8j3ebeOySyh9tjsMdVn5824kdfOZ9jgLXdjCboZla5dB7LniPn/G+kOfaLfL9ng7ZTrf0Z7wDmjYamnGb9cS05MttbSDBSw7OlhrPb4kT2BO7BLilPvhRBA+FwyrsxduxpHPUWOMrUi77R4PFlDsFqFUmzEzD7RnNhj1ezUw6rJN61Nh1N/bom+meDZiFJdCXtDVmcYoFmPHg/IMtMZxOF7ITsSo3Z2ng1HuAWPGy+nCqHmCx8OL2skwyqKWC770l3/5l8EZtyxEwaoVDdMsWPKz7F6jEBI3R38YN3aFmW8UZvrDLgb9ZQ4oy0eOfPKTnwzqxL0bPkBiJLB+0003BYlVqoHRXCajVF3daZWjnEcbLRYULUnxgQElOHP5nBydNUaP/fBH2p1IaMnFF51UjmYWLlD30aPBLux0MNrc2qpOzm5ubp63cnT7zl2KxmLHyVHKTz79gEojw7q+pUYvD+XUPJatfiZylPuHm5v18vB2XTCcUXJ0VC39gzq6ZFEgRxfF2vQ7yRE9EK1X/k23VAWj1dR1gx23Ul7FUvF1o+umd5WlXcNqbuqYN7puQ1s6cMEfHhpRW2uburu6z1pdN8sxQ8WMIkUWj1JztrKoPZGuS2z14X1HdPTI0WBc+P2VLa9oRcMytSxv0Y4Xdh8nR1esW6odW3arvbU9KBeM9gx2S9FL9MZ3XaEnvvmU+gf79I6bcVUGA2Wtveg8ffvvv6fuzl795n/4daVqU4FbMwmqXnh6s6LFirFkMoxWdWFrEJrIICgDwaC2y5IvE5iVErtX2Pph642J0FnFbHkxqA0yT7DLMDHznRmQJ4sdNltFHfdgZuPn3baAIQ4PjwPTZUGQdrPhPu4xsAwqyvDRBXzvI0wCK+VYRlHABAgArFOs+7wsl2mrnNOl28UHwrRLg61nYRcWt9UCxozHLiUu1+Ps8bIFy0DDgoVLSxgw/M/Cg/9tFWSBSzso2y4mAB5FkL7AGCgX5dm0YfoJCG8sINzMdSKdUZYzsNoVw0zUjNRC1W403GMGYcHD5Z1Axt5Hh1AGQpI+OLbO7bBLIc84EYyZC8qrzz3D9dip2xGYzK+TBEB3xOCFYyHYOQOgDvSnXO8iOf6EfjG+nktn74NJ8TyC+/LLLw/6RAZJlPKZYpQ2vOtd7wrux/3L57PNFKP8/h//43/Uf/gP/+E4DHKPrZDGqGnrV3/1V4PnOTvNtDCfMWrFZL5hlJ2Pt771rUEyJLAHnfvsT8Z0IkYDi+zYkT/TxajdliZi1Fjk8uH1TgAzW4zSV3gNyhBuxFayKNcxn8yjy2SOOMLgAx/4QFDvgw8+GOzWOhEJ2R5pOzHDzBMLWMpC0aIvtJv6AvfCI0fGFTbwbOXJOOV/sMp97JLTFoQ5CxV2i2+44YZZYzQzNKzW3j6NjFn950KOhneVjsMoOxH5nP6furSeHRjWv+mQOpLxIGZxPmN0vsrRfc8/r5/av18bymV9a3SkEp6Vy6t2rOxXYXRoSPu3b1fT4sXTxmjTwoWTYtRylFm/cGGjapa26J4XdlQFoyeSowEvUE5XLmtXIhnVo0cLYlTDchSMHtzeqYsKA+qPJNSyas14RvTZyNFUTUrtQ6P62cPduq+hkviOclesX6+d259V+zVv1aW3vm3WGB3Njqp+db3Si9Ia7R1VZtfs5GihWNDR9rxaD0aUK+YVGVOlX0u6Ln2cj3I0rOvW99Xrjq/frcXLF6kx1jLnui6ZhwejQ6qPVww61dR1Fy5aqAOL+5VYnlLxwT61lCr6+4l0XYzCHMnF/9Z1h4YHddN1b1ZzqlmRK2IaPjY6LkevPv9K3faeW7TtpZ3qPHBE21/aoVS0Vt//9B1B3/hrWdA8tjashHHks3ktWrFImYGcdm3brQvfcEHQBs7bVSGit7/j7VPqulVb2HoxaYKxVcJWM1ugGCyDyYPkiTHheQvbbgl2JaNc12EhbALhnvCOQdhixRV+Pmw144LoHcwftvZ4+5/PfAcx+FwxLrsR0H4YOBfWHS+yzOgo1xY+u6pYeeA7GKqtT064AZE70NuKhbOSue/e5rfbhnctDHDGw2PjsbILq4nebhhmjn7GfaQcW1gRIrYguTwzILfVZ0BiOXKKc88h9QF4yrGLTiBwm5qC9ti1wP1xfBDj7jEIu0ZQht1d+J0dKJ7D5QiGZFqzKw3tANRmfHYLMs3Y7YuLBSn3opw6voHfnB2ONplJecFqyyhMmhhju+U5ScPNN98cKMfc++lPfzoAvBk1SWpQmLmPHR7qsVCBadAPH6sxsc0wP3YGTVf0nfod23kqGDWt/+7v/m7Qd5R94kRoE8/NFKN8h/vJhz70oSDL8q//+q+Pu9SGF79+nkXAPffco0984hP6wz/8w+AIGhiYcTAZRmmDXYBsXT4dGDV+2GXALdZHH8wXjDJH4JF2QX8+LsaLs4kYZbeRxRj0SxtmilHKZCEHdnjObojeHTgVjIYt+O6373cCJ9yn+d8YtesceAR74It+Yd2ln/SfslCEjTEUanZWUZD/+3//7+M4tksYY4ersTFKHXbPsoJLMifogP55QWilmt1d+ke21pliNOj74U7deLgrOCLlgaEhJcfOjKymHA3wk8trJBFXcQwL4ecPRiP6Sv+Q3liM6OO9Q3q5JqbOePKEGD0nRyfH6ChJhyJRrS3k9VP79mvP976vC4tFPTLQr2hNzasxunq1Xn7m2VljNCxHR4aHdO3G87R8UYcODua0v/vYKWGU58sTMHoyOdrb06NMSbp0QZOe6i9q2bIVr5Kj2Zp6PVyqJI6COjA8zVaOZtL1ujed1mBtShl2d8cWJMxNf/MyrY3EZoVR67qtl7TqvJvOq8jlA/3B6RC4Wc4Uo4l4QrXHShpoKmu0XmqvHCFcVV2X+zmyhrNNfZ0uOXo036fMipiatlWen8+67uE9R1QYxkjQO6e6bhHDwTV1Wrq0Q0d+sF8t0eaq6rojwyPSkbxiC2tVTsS0rGPZcXI0rOseGO1Spknae/Ap7f9RvzpGUuo60qVBPHcSSTXEG4JF6iWXXqzcYDHYtUWOPnzvo1q38Txd+saLdcnlF6uULQf0FZajo4MZfeb//mzQxpaWVjWk00rVVNzXf/DNO/TDb9+hUolkkQu1csWqYKd4Kl23qlmRuezqYGsCjfIgM6kwl3Dms3CcAhNjYDrWyeA3SA1Cg9nE5on18waTL0+oXUD82S+X6XsNErt28p3jHHmZSG0Z5N2We7vGGAwT3T9smbOLh+MlfB6YiZr7UTJtAUQRs0sJhOqx5TvKsIXPIHIfPBZmuGY2PAtD9bgG5+cFBFrxx7frKELJbhQGBG1zIL7L4H+A5myFBjF1Uh6ukN7dcRyCx4synA3OYIQpuD/U5/TvHm+PIfWE581Kmpk3YwXYbVXk/rBbCp/tAuKxNX05yUjgEpVMBrtDlEUSGivrtNvHnSAcHc9jYWc6oG8IYXZrrrzyyvH+UT6/Mb4o1jADx1A6OQZj5jheP2OcUDYLUJQIx1DSbicaOBWMUid9ohwUeMaENhFDOBuM8v0jjzwSjNP3vve94Hm7GE+GUS7ogvZwjAuLEQSFD3O3hdYWWPpAu0k4Qr8tfE4HRllQkTmatjvT+2QYdZus+FULo8Zl2N3IfbGbGfd4xxscYnH1+YWTYRQahgYROjPFKO3hf8dCMW60n9hWeNmpYNSeCQgxJzbj4l52eGzdn4hRnkMBYxzpGxihPbfccksw7nfeeWfQTu8A8Ay7uvBdYqowGFGWDVhcKMZhjDI2xg799s6vMWr68g45u8SMy0wxWpNI6NjQsB5e1K5cLssgHCfXqiVHA+Wxvk4/QegEjEYiOpwvaKgY1bZYUa9EYlo/OqT9YzvgxiixnWeLHA0wyhEnYxiqFkYHyQKaTCiKGyWZSCdgtA5DT6kkouzSKG99x/Tdpib17t49JUaXrVs7a4yG5eiixUv03SdfCuipnKzETJ4KRtvzw/rEorT+YutRRZvapi1Hj2Wz+vLeI+pYsmxcjoJZG63nRI7W1/0Eo62VLN6Uzc5PW2NaQwd2qzdeN2OMWtft3dyrFdes0ODhSgbhSE1Ekfzs5GhDJqGhwREle8Hoq7PBzlbXzeQzesvvvlldO7rV+eMjp02OYgTtW9unRFRKHyoH2bzP6bo5RWJS3aK0skdH1Xr5AtVurxhLTT/V0HVXlNM69ECnysWSRupfLUeDPvR0ayhVUrQmprWFhVoWa9V3y0/oSG2vmrpLujS5Uvff9aBaWpuVGcwqGokFOESOfv0bX9fjP35Sl1xxsXo6jwUZuskoPVGOxiJx1TeklRnJBK+wHM1mKrrugf0Hg0zMbKKdTNed9cLWmcxMqHY9gdh8wD0D6rOzzBCsmHuH1YzPFii+93lIjgFwULvvNzHbDWGigsxl4mbCvWNM/bbqhF0gTRQQny1pxC8yybgjODOt+2DXDB867Xbauk659Nupzw1yv1OGXRmdxt2uHyjzfOdYOGeSM7jNNOzX7xT1ZoTc7+yddrPw+WSOEfH42CJny5UZLv+jGNAGXo4ZdNwEdZrh8T1Mj3q9W+R+2gJlZm4wOrbL1jbHZ7i/LsvZ5BD0zBFlm4ZctoWBGSjf017vnNgyaWtZmPGx42Z3GNrrLKam1+C8smw2eNbxitThRQMMAAZlSyPPOuOfmQ07QU74YUsawGThxpj7rFifC2mGbqWQsixEeNbzxTu7nE7cYMvsqWLU9EFSHXZMXZ53XWeDUe7D0g5DCrs/TYVRFhU+jgb6o0zONvQ9lGErKS+YqC25Fl6nA6MIZAwBWLJPhFHHWFMPQqtaGOUeFta8P/zww+OLWS8mKRfDBHWyqMTAYKE2lxhlLJk/6uFZxsl9OBWMOoEJ7QQ/jJ+t9tAndVkxmwyjPPvoo48Gz9EGaBuLt+eFhap3KxhH+IAxCn5x74fvMb+0bSYYtXufFSpnfZwJRvmtZeWK4Ht4x5mUo4c5tiMW0YpkTNFySeti0r7QPUuT0qJ0SpsGCmeFHA12kw51qjQ4pExDvdTcVBWMNvQd06d6O4Mx+UJTm45BN2QzjcdVz/maNTV6rFzW4b17tToq3dnRHuzU1o/x3tMhR4M+JGoCT0DcoE9Vjg6k2/RXO47o3ect1nM1Hcdh9KRyVJEAE4znooULpdFB3XrVperctzuYb2dH7dy2TfEbb9SGDRuqLkeDXbx8Rr93/Xl6fM8R/fPL22eMUeu60URUm768SYlcIjhmJ1qcvRzlKiWiSpcqBtJq67rLli5TVLEg++zplKMYiA8e7NNgI1j6Sdbk17uu25/pV89DR9RebBn3OJmJrmuvp0wmE2wA8FxY113cXDmK7kS67vnZDqWj6SBHRH1dvUpHwG6lb8jHrZu3BTTF+dN4Nxmj6fq0Xnluu57bsllNpYZgvudS163awtaDGI51tLXNhACxcw+Eb2FsUHinyK7JXAayO2uXErsXmEjNWCyMzWQsoH2vlXPv6Ppz2G0BwoKJmuC4vKtkK68H2FnJGHiXYwuMXRbop/tgpcYAZ0yIv7QFJZzMwi4NvHzYveMewjENdj21tcZuZAaa54PyIQCfJ2aBwMsuI/xm6yh12GrDggGFmAvhY5cJ6mVMzOTMfLy44HtbutwGMzMvAsKWSY+b40dpA4tFZxalXCxZfO9jA8xEDVrHBVCGGT73Ohufs82ZpuzCwBhTB2X5f8q2pQ+GgYXOY+YzF80MYURcWOFwt4JJX3rppeNuh7QLtwsWvuwIYaWiHOg+cP0h0140GtTh7HhOf0577W7CGNpVhbroX1i4WrCwgJzonnEqGLV7lOeHa7YY5d3HV1i4nAij9PlP/uRPgoO8WXAwNnabc4wVCivWe/7nBbP0LrpxMtcYtVBi58SKyVQY5d73ve99QV+++93vjo/9bDDKXNnF9c1vfnPA9KkTOuB+W7nBrs+QtHvWiTDqfnvRd6oYtXJB+6zozASjGDP4jnJYdDLf0PepYJS+BYpxZ2cgqD3WCF/6jhJDuzEA0I8wRrl33bp1wf3syNvdayJGfbzIRIza0EK/MerYTW+2GJ0PcnSgJqkvSvrVZEIfaUzpkMrKjp0NG9DUSJ8+tG6Rnn1itxKJxrNCjiY72nXekR715wva19Q4vpM9G4ym1qzR47mM0q1t+tiBvXouJo0uWqL48hU/wWgup/1r1mgnMYFjbTqZHA0yr/f0zBij1ZajNYuXqTc3quHuvYq1LZyRHB0dGdb7b71RKpO8rjHwriBh2a6/+B9KZ3N66N77tPaCjVWXo9GIlIoU9Sf3PKdF9RVluRpyNDlacb2tphxN5iIqlKcnR09V122ob9Ard7yiY7v6lIwnT6scvXbBJUFyoP21+08oR+eDrutxPpkcna2uG8TCjsZV3zI7Odq6sFm3vfuWIKZ1+8s7temJFyvzPQM5ihyrYC6ndDSltSuX6pY333JCXbe/PKjo2lr11md18N7Dqt9fe8py1G7sJ9N1q7awtYugFaawS4DBZwBwr9036DCd8u9egXPxmUGykmpQGrwmLG/H26pgRmFL2ERLtHd4TAxhH30+syhhYrlMJCYi+9K7LgBG282sTGSeKPvoGwx2nQwrDxAS5drlzfVBZCistv7YSmgCMIMOu5/ZXcRjY6HsvoV3tMxU7MLH/U66YisQvzMeKIQod7SDhRuKIN9xQViU6Uyqth55DBw/EN65MLEzPnwXZsAmWD57R4Lx9Rx5nOzqYkbi8mEu/OaybUE1M6Ucu78wPvTPFjlcI2B+dl0CZHyGoXgcvZiAIdBHx/GYmTGXH/zgBwMGiVuij5Mgy6MXPn451obv3X9bWk2jBjH1m9GbrrnfO3Smdxgi7fORI/MFo9RhBsTv08EoF2OIu6mfMUahIcqFNtw+8wG/5htGue/zn/980Lff/M3f1Be+8IXxA9tnilGwAs1DA7STXUmENLulYYw6ezGumB5vygyfdxnGqHd1nWTiVDFqy/FsMerdCtMbc09/rBz4fM/pYJTv6T+LZdr47ne/O+D1HOOAUkNfbEmmvfA5MiLb6o2Swj1hjHLZeOB5ctu8I0x/UQasCM1XjM5EjnLtiZX11HBGfaWIoh0V97fgyKidx5SMV5L1nC1yNFmT1LZ1q5QjtGHLTm1qaVBxYcesMVp8wxXK1daq6+Zblezq0qopMHoqcpR2NLa2jiv1Z1qOBuMxmNVvrWnSt+sWKZZInjJGKe/ehx7VDVdfqYbmtiAnAy7CxyLSgnxeB+67XweOHhmft2rJ0XyxpKExOXqopxKOMR8xGiwwIjGVypXfq63rBnPemQ2OBIpFYvMSo2da10WOti5p0Zvfcb1efOol7dt6YHwntdq6brXkKKEjza3NikYjuvTKi3Vkb9d4kquZ6Lr0dVEhqd/88Ke0ZvXqYP6m0nUHBgfUeFuHyi3xIMa8fH5SpW0/8Sow/WZzWS25aJF2PrfrONf24XhW5QVxFZojSm39SfKtqeRo1Ra2JhRbcmyBs1XFlidnOPNWvFOK2/JiMNjX3FYtA8iDbWZqy6sBZAK1hccMwoC31cEDafD4Ocrx0Sq2onmAaTNWJz5D4OGsgraccHlbnOcYeNdpyyzfGbDOmuu2eZIhBspzFjY+2+/f7TIh+7PHEeZh65GtTvwe3tr3u3f87Crk9O+2GkHoMD5btuxaSNm02+dv8TtMwSDgOQS0x8UM0aCDufmcMLvF2HJmhg+xeoeJZ51Bz+eD2YXGtORxsgVyXAiMMQvTh19mxD4aAKWVTMBYmsiySn1mGGbEtJ//mX/G1vV6HHlnTBDEVqA97rTVbst2t6AdjCP/w1joC/dZSTZ+LAi5PM9+OWbN40i7nAXxTGPUB4Gb3maCUcbSNOrjAZibsCXbGOWZamHU+KoGRv2s548xJtuzDSqzwSifrRRwgVFiUSfDqBULj3k46+RkGEWws7Dj7FUnBDrdGIWvsCjkolzaRL/sFgefYRymg1Erh+z6coFPXvSPl3dfHN9N2RgK6B8vdnu9M2qMMv6OA4P3WQnivttvv32c5qjTCvV8wmg15OgDpagSxuhY3dBCrFRWCdfWOZKj1cSoP3PVtDSrcdFCbUcuLF6knt7e04bRU5Wj6utXae9B1Vx56biB80zJUe67rjWpxe0tWhpv0JFMTl0/ulPHlixWsqlxWhgNQgeefUEPPfVc4IHCrg8Y3bNmlfbA8wcGVRgYCOqdKzk67zCqgrKF06frVlOOVlPXPc4QMXbO7ZnQdVtaW/Sen32HmlubtGz1Un37C99X1/7uea3r7tvRH+yG19amtG/Xfr33ve8Nxnkmui6/ty9uU3JVs+585h7dlLl+Sl2X9nQsadf5685Xd3ZQnZ1dyuwYUCxbSeJnjJajJd30czeoZWGzLr3pIt35j/dqsHNQI+WcGt67XJFkNFicj+w5oNpCxXAxFUartrC1FcUppW3N8URa6bcbhBmEt5oNOLsfmAHwm61FBrmVDsqzdcETGAaumZfB4FU+gz7RbcPgoR+2hJqBUD4D78ByfgPotvTQJogfQeQ+8wJkdufkXtpN3c4SOpGxmTn6YG/vlPBdmFFyOfW6M6CZCLnM7BzHZ2tRmEmE4yzsPhNOsODLVifeWWBQFuMFEGypg7l4bAEiViB2PwAEcZqMFXXZemm3MPvVQ/xup5PE2A3CSYHCcRM8Bz3QdpRF6kT5dPvD1i1nEeZZu/i4rR5X0xuMC0uTd15hNOEFmZl+eMEWtka6PF7EhxoH7rNdbvjOi1vGnu84goR+3HvvvcGCmO98lprvpS+Mqa33zG/YoGE8OYbRGDiTGLWVmvGoNkYpH7dbu4VVE6NOYmJGPluMGu8WHqbF041R7vEijLJJEMY4TYZRxpKU/vfff/+4wnwmMMq8Qfd27bIbH21msWDL9MkwSvnQCgsHXIqpn3gq9wH8+1nPMRZqeBh9ueqqq4Js3mAUeg4bk7xDQrtRghg7xhJFibmycsOid75hdC7laD5Soz9+YqdK8epjNF1bq6sjQ3o80jgncpT3puXL5rUczR4+oo5dBzS0cknwzJmWoxXlN69RQge2P6JD9e3aW1ujaH+fUvHYSTGaz2X1oZVNen5kWHvysQA/7lPtWGbeSEe7MmOJB18vcvSy2y7WqgtX6n//x797Xeu6R0vHlFNOxcGSFK3sMp8JXTcWi+qlp14JXOVbF7Zqw9oNiuV3zGtdl8//8vdf04d/8af15MPPqHx5dMa6LjT5zve8Q7UNKd31/bsDrFnXpe8ODfAcf/TtH9aq5avEgV47E7u0+BeXBBjds3fPuBxd/6Z1au5oDI4dq6mt0eqNK9UVqWScPrqzX9GGuEqDBWlJUiMHM6otJ6fEaNUWthAME8jlbXBbS8JuH+EGGGwmeE9Q2MJkgrNVhclj0iBIBjMMWE+i67H7geu2pd2WEjMABsaWVNphIoSAbMnmObfNcSnOFGcfee53nIhdAJzGnHpsjeFZynI6bvuSh4PYTdy0xXEcDiw3c7KVz1Yd6uE7B+2bSduiaisSbTPh2XWEy2DxvSZwz6lBiQLovplR2Y0GGnCmS/fJrr12l/SuCPFttMHWPQeB0z4YaziWjOe8E2KXGNfPO7+5zVZMqN8Z6Ox+RLmOhTEj8HhDT9SD6xOfw9bQsGuhrY+eQyvcfmF9u/rqq8fHHsbIjpOFYDgugno5X3Tjxo3Bczxz9913H7erZustY2pBbeXeTNu0boFBOzwOZxqjvqfaGIWuUPzmAqOMFYsedu99uPpsMEpdZAckRT27fnajriZG7R7ko2WmwijH2dh9GQxyVuRkGOV/MlhbMTpTGOUiaRTlOFMki1PmhTJNkyfDKPc5szHv0AjtQflioUp8Le1mQeE4MF4+todxJcaXOlC43d7wLomt8VYGON4j7Fbqe+YbRouF/NzI0WCHfW4wGsuO6tbldXr5mJRobjsr5Gh+dERDfX2qbWk9IUanK0cP9w0o+fa3akFtKojRPdNylDb+fwcHtXo4ofU3v1PR7/9A0ZFRRRoapoVRlUq6qC2tdCyq4e7sOTk6hlG0/dp6FivR17WuWxNPqvamhRp8vFPRPTn1lnrPmK6b7ysqU8hruJDR6uVrgl3Q+azrchWyRX3lc18PPuMxQhIpjMOnqutW5iqmupo6veNd79DmZ14O5CgbDe/68Nv1rS9/Z9xtmvHbs2uvNmzcqHqOFasd1RsuqcjRO5/6kUrxol55cHslWdkYXTNPe184oHK+wo/1zJAKJTLsV+YHq0Y5Vp4So1U9xzZMPLZM2arl1XvY0uSVtq3dBqStKwbf+KSMuYvYuuHdBxOhGYtBH7ZkuU2u3wCyD76BYUsK39kdACXKCouz1JlB2U3AsQFh64mB5ZgK715BcHYDMTOzSwbleAeA+zwerssuNmbYfE+b2CVAWTYA3C4Dnf9tnYPQLRwMZs8TbQkOhx9j9rQBxQcGR8yJ3UzMdO02wc4Gbecd5ZN3p2HHOkpZlGvwmfmFGZxdKexq6AyWVhSdoc5z6DLC7iw8j2LKXDiNuBVzu0cAULukmDbM7Gg3ge98h2syddBfGLgth852R3thSLaKum0+Lw1lnLrYHTKzNC1RnttFPAeLKMokWyu7xhaejB11MBZuo+fG9GtBGXbRCQfZT4ZRYyqMUVtZLQRnilHj0Lh0O84mjEKrVtjs6jobjHo3hUWlXa7mAqNknaVexuBkGIW+oM0TYZTvvTt6JjFqwUq7qZNFqF0Pvft8MoyGadrJtpzoDSHPxb0k8eA7ygOPjBFZWP/4j/84GOtw9kp4g4+hCh9fZXq2UuUdpVPBaDmTVaqp8TiM2rVrthhFQY5Hgk0PNUZLKtbXqSvXf1Zh9Iak1JhMaEXmmF7s/kms4XyWo0M93bq9NKJNkRbFx3jMbOTo0vXrtGTZsnmBUe+SlWJxDaQa1dXXr5ZLL9GxRFx1ra3BGJ0Moyi2lPXDfb1qOG/jvJejp0vXPbSzU22L21QoFF/Xum57XbP6SlE1XLdIA30HFMlEzriuC31hwDwbdN14PB70hXZv27NNg5F+1ccaTlnX7VjYrvp0fbDQ7DzcGfQDj6Q9h3Zp+cqlet9H36sfff1O1dXVB+U9/sgTwbOLFi3WLW+5JehfQ1ODLnrLRvUPD2jX1v0aPZTV3X/7wLgczY3SzwqN1J6iHK3awpaK7HJgdwxPSNg9wStrZ9Kz1SHsC+8JNTGGFw1cDKAZh61MYetF2CWDywzI7+FEO7TT5dtKZ6aBQusLwEM4dieAwJ11DCI2c0LhsX+63QnskmIGY8ua06v7XEYru34505wtUe6Lgch4O2W/3R1sUTKAbHUJl+NYOc+Xf+N+CNSHRK9duzYgbMabsq+99toAgPjkO34FQFixtHIJOFyGz6KjfdRHWYwr98JEbLXyeVp2PXQyCAPaadxtUbTlz3WG+2nhZUYbpouwJd4WMjMg6qUeC1DPm626PnbEtGcXCltYuRz38aY3vWn83DMzFax2ZPdlTBC6O3bsCGiJGCIOnWeMfvSjHwWxHTyLgu1D6qknfLRH+Dw3M0naYIE7WcxBGKN2yQlj1MzQdHPTTTcFbqhmxNPBqK2D0KXnyAdwW5icDRhlzr2I4v/ZYpR7SFDk89YYs2pjFAEJRtllJuHWawWj/OadAycdol28W1k4EUa9kx3epT3//PP1h3/4h4Fi8Pjjj49nNXc/GUeOcAKjGAt4QVPsGH36058O+kl57OB6HKExu61NhlErmdPFaLBQGBtDYzR3rF/Z2oocLReK6hgaVXdTvWKhzJgnw2ghn9fPvmGNbr/oPH3n5X363pGoRvM/uf9swegz+ZJSfTk9MlRWLDF8dsjR1lY1velNWnfggF7Zvv11IUdrx47jmo4c5fzgO/Z06+LmlPZmR+e9HD1duu6ezXv0ytPbVMq/vnXd4J5n8+rvH1RLIa1s8Xj+ek7XnRqjdhOOxWNqWdOodW9aq22P7tBA79C0dF0ngeLonsMHO/Vf/vDPdN55a/TJX/rlQI6+8OILuuVdb1Emm9Gq81bq8qsuU2tjexB7C0bv+MEdWr9+g667+jodOHhAR7OHFU9WDCVr379RycGIDt19UDXxmoDmksmZy9GqLWzD4OIyodKY8FaxLUzhAPSJu11efYfdRCEGTxaKstNi25/eTMHMxpY31+sVvhmPLU/hrHZcnuCw7zqERrsAFn7uWEfMjOkPfQxn43PyEcoOW7u4xxPhwPow6PlM2VxmPOEssvZvd8YyfofQfcaTx4LL7hO2jIXHxr/7O8ed0D8IGgXZ40M7cX2grZwRB2MLZ2Glvd7R8llzjJV3NJwZzQsnMxpbfjw+dunhexiFLVxOG29w2+LnZ+1eSDstNGiDrZlhlyXToYWBU6fbGudyvQvk7JRmOJ43Fq7hzHfh+fWChfNEUYZhjNArrjsE6zMuLJhQrGF2lMeC58///M8DKyHCl+c5J+wtb3lLAHDGHhrBzcPHkdjdxAzQeAm7RJuBThejpgvmEXdsFP6wJXg6GPVuoZmw23K2YdTZgBFm1cKok5O4T9XAKPRLv1nIIkhRJmeKUZ/hbMHM92cao2AH5ZXfwR0LSa7AFTWU0fVEGKWtzCNl0Wd+JyEWmbbBKO7hdpNE2YHfoRjzv92Qwd4f/dEfBePsYyx4ljrALWPAi1iliRg1HdIvZ86cMUYTMZXYHSmU1D6aU2cqrngoNmo6GF2YKOvN65aNY/RslaPR+hY9kM2qY2H9vJajx44c0eFnnld+yUItXrJkVhgdGRpScrhPxXR63mC0mnKUezbnEhrNZLRxactZKUfnStflHNyzDaNzoesGbvmxWuWSlUzJ53Tdk2O0u6db7/+Z92nDhvUqRAva1POccsWsVmxcqsNPdgdJpU6G0aHMkFa+Z4X2fn+fOlor2ZRrU3XjcvTRRx5Vur1WV93wxmA39ub3v0W7tuzW4sxCdXYdDu4Hl3/8x/852NFdtmSZCqWFOpLrVH8ir13lTiUuatCFkTVTy9FiQcWakqKtERUPnhijVTvH1pYnM4gwc7BFwi8D0q4YBnx4UvmOQTaB2ZLq4yrs8hlk1BojXFv1wuA2iMNZ1gz6sNsIl2MEuAeCDe/g8BvEZ+uHwQNATFBmAGG3KJftdkKMjg2xRYX/ndzAB0qboO0+YtcNL0Ls8293ATMug9TWR/63S4aZhvvtsbd1xhY8PrPzg6KHe4UzkDo4nnp86D0ChrGFScAYuM/KH++2lqFcBgx6LCsmYCDeMOyy4fNAbQnkWccZwEx81p6ZBeNngci9jvcwA3EZ/t+gt6sM401brrzyyiA+h774rDsLFOYboUlf/B3PhuP7XDbtRvl18gFb1tx3vqMexs9HlkA7PoaFui6//PIgHpPxpV/E89Emj7sFgenWQtP9Nw36WIJTwaiVDMbVTPxUMGp3MwsxhMQ5jFYPozxrLxUrB+ADmjJtzgSjjs1FceT8ZRI78B0Jk9i5ZJznEqOeZ+9+0Efa6nHhHWUEpZW5dcyXk8DQJhYMYdwao9TDM1YYeXbbtm2B+xjt5FnwyZhSJ0ow7THm2CGyNRtXcpRtnmGc7EJHvxHapmtjFB7HPbTdigg7S7Y8zwSjgcJTLikPdhoq5w+eCkZ7Bgf0J3c+pXdtWKbHdx9SKlUJ5zmH0SphlMVMX59KY4lh9u/cpca1a7RozepZYbT/2DFFOo9oYW1Kl+/eo2dYGC1fptVXXaddW15WrC79mpCjyWSjIoODAUbZ7Tkb5eg5XXd+Y/S1qut6ZzPYZc7nVBg765pnLrhwY3CUWa6QVXNds3r3HVPDSIvK5yW1tHmxYtFY0KbNL20OjCivwmi8pNrWOjVd0KShvUOKx+KBrssCNJqIqpirtG3LC1v1lrffpAsuX6/1l6zTyvOXK5aM6pkfPx+Ut6Nvvx7uelHv7GhWMVNQ79ZB9adHlcjHNdBR0p7n9ihS+knir0wpp4GanGoW1enCWy9WMhHXSNewDn5rl6L8TYLRqi1srZAYYBBM2KWCy7/5d39n4rW1wL9x2bXFE8jEoSj4wOQwoA3qid8ZfH7ZamXLnLfqDdSwlYSLyTaR+l7A7e9toTFRw5hsmTdTsfuKdxj4jsvp07mfHReeseXMQOdlIPKcFTTGBOJ39jozdwPdrjUmzrAlJ7zT6LOy7EbhnRAfrcFY25ffrhr0hf/dB/qEhc/CweBzfEMYcASs8ywLIB8RwG9WaF1+uB8eX1tmTGsOvPcY872fd79sObWljP45Qyr/477EDiXfo9Teeeed4wmEKAuAU5YPk2bcaI/dVOkD48QZuNRlC7LHmnK5l3KJAWK3CGaD4MVFg7pgenzme8YFl0faCCPFegXjtRCiXLv5hC2k4IS6WJDyO+Nyqhjlgkncdddd4wLrVDAK/VCvY2/OYbS6GPU9xij0guvYbDHKODHv1IlCSVl8Nu1Dkwh95rfaGLXCweKPd+LjWHRa8aN8+vmnf/qnAWZo39/93d8FygKKAcov19ve9jZ9//vfHz9Lzxh15kfKNz4YV8aC/201B5vQhT0NGBMWsrzTTuq24Yb7qB/cU94TTzwx3hfPG9fP/MzPBO1j0c3uEQqClafZYLRck9TRVI3ioR2gU5GjXYOD+uJLhzRciqLhnsNoFTGaIhtszU8wumLjhqpgtJ6EUiw8amv18LE+xRcuVM3ihRoaGtYQR04d61Zf+2Kl5wCj5+ToqWH0nK47vzH6WtR1bQjoyfSroZhWT2lQFzWeNx6TO0y24pp25QeKeuua27Qtv03/6wd/pf51Uqn3RXW8GFNXX482xQ5pSW9KK9ILgzqM0Vwxp+G+YbVf0q7yxrI676oYpBo60nrfz71b2dGs7vj6PRrqH9ZDdzyiY8d6dfGVFysaiSjblw/k5bGhfm2u6dV3Nz+og8/sVms+rcsvu1w3Ji5XV3+37nv4PnUN5Y6To3WJWu1ZUVDNwIi237ldy29YpdyWAXW0d2hocHI5eqLrJ2nXpnEZYCZKW09sSQlbm21N8qTZimMmY9cKTxxM0paisG+1j9Hw/Qao//fgWHHisuuHQW3i93MGrrPe2RrggbOfPO2AUdtVze3GUoPi4hgsMwePj2MRTNxh9wknlaEtZiJmwly23PmzLWrcx9gYtIA0nIXOTMYAMdPzvU6I4sRBVvZ4BgDbr9+Z5tg1WbZsWSB4nBTA48EFY7DbJWNiZu1MoSiYYfcLM3nGGQFk65WtWvxvdyePmZm13TXs7mpma0uyd3scpwGzgNnwP/3CKufxoxyyo/KbD5QH0AY340QiC8rnXtrmdrIL5PY5k6Hpml0wxsDn2uLm4gRFZnj02/RFPZRr1xfGhXtgkLY2miHzzng7kQ5toi2e05lg1HM9G4zyO8+fw2j1McpVbYy6fD5TJnFpYIXyUDR5Nz6rjVHGhXhu2sD1wQ9+MHAftLcAmVH5n6OJmC/6Sx2MLW2Bp3zsYx8L2vm+970vKMeJv7iPuQZ33Et/HU8ZPlPReIBWoI8rrrhCv/VbvxUo6owt9/zgBz8Yt94Tk+W4QSe78M63MYpi5Oy2jJ29OKi3Ghj1kQ7nMDr/MBqdQ4yWiee+7A1af+01qq+vLCwWL1+pTCqt9UOd6u6qJLU5J0fPrBw9p+vOb4y+1nRdxmVfvluFSEm5fE69qay6IkPBvbTlr//n/9ZjDz2u5ctXjMvReDSuQqNUPJpRZmhUz9UdVra2rNHL69R8cetP5GgsqtarWvXsPz2rQ48fUiKdUMdNHRWDVNeAhgdHgjN9b3nvW4JdYfDODu3dX7tPuSMlrV2zLhjbVCyp9EsVo8ihnqNasnjJuBwdGhwMXMwnytG+6IgKCSlWkFYWFyj1aF7NIw1qbZlajlZtx9bEY8IMg4jfTKROgW2Lil0kDCyD0uC1K4GtfA5iNsgNDr63RcpWMhO13Q14xgToNvuyxQeiMyHZRYIyIVi+gyAdY2CQ2iLCZyYEwnS/zWBszTGhmEjNBJxswAzS7Q1bAxEm4TGyFQ/w2O0nzCwNcCuIZspcbrOZra1pHl+PtV1S7CKC8shYsFPi2AveHZfHs2YU7pPPSKQdxLcEAexj7hcQJhdC8pFHHhmfCwtB7xqFrcRYvxFW/G5ha5dDu6CYfmydZEzsFmUGa9ratGlToMjzGzsrvFOWrWCeZ8aIvvJuhszlc+c8Hj53E+swtILLVGBxr68P4hEQyjzL2PJiTOx+g7CAKcBIuWAGjDX9sauPs2TasmrLptPrA3TK8Jyfw+hrB6NWFux6MxcYJWOws0oaoxyrRJnEu9qSbBe22WKU8tjxBIMf/ehHA5dBhK4xyhjQJysBYJTv2IFhh4a+PfDAA+Pjak8BnqUd0IITmNmCz1jwG/XyP/OD26IxilsxLsdhjELfLE5xTaZ94BhFmLGbDKPM0Re/+MVxDNgd+hxGX9sYDbKzFvJzilHoz/LJGF2wfIVKjQ2KP/2EivVNVcXoOTl6DqOvNYy+1nRd+tWWrVdfeVh7Ij1K5BNqTqTHMUo9vT3HjpOjTfG0Dh/olA5lVJNo0arRZhUjRV1z+SVa1b5QO2p26eiBLi28aJFSHbXqerIrcBMOaDgRG5ejTz34jN7+07cpnykEO7DGKLL8oYceOg6j6ZG4ouWE1t6+Rgd6D2jLM1vUWju1HG3M16hpRx8Tqu7aY1rStiCo90QYrdrCloZAZGEwGcBmAgaU7/dgm+gMUoPYFjU+c78zvIU74XIdZB52+4Dg3J6J7gq2eJihcBmwZhS2jvCMrZRhoEK0dg8wsLjfiURsVTIDdWIK98uWNKcUd6wKE+XEAmELll0meLcvvkFohuCynN3M/fbvLs9zw7jy4hmEAff4gGX6ZQutrYhYPgGKLbCAnzIRPvTL8RlcBpTH2PNAWU5CYMaNeyGuehy1Y0YWtoyZcVphtLXR8+u4BQQh2RBNC55n6udli5iFExdxAiSLMdMw/XCFA/8pz7F+LtvzjuWO8UHh4N2xpdSHMoxljR0nlGIAz8tj4LhW2gcjMB05psKWRz7bcm6lgToYe4SMY3Ponxn+OYyeHKN2qbPluBoYZX7Cv1cLowhH08Hpxij34m5IjKizZGLNPlWM0m4rnGEcgRMSOTF+nEl5MoyyqPUiFWWH/nqHgfusDFixAXu0i+c9J2DZ8byMDxhFmWHRPBGjlPvYY48F99AHyib+2O5yEzFKm9hVuvXWW4NxYqFM2ecwOjOMloYHVS6WlasSRudKjjY3NSk+OqjhM4TRDdfdGGB0zXCXhooljS5de06OnpOjZ6Wu2zncrdqaVLBIO6frHo/RmtqUjnYeL0fbGlrUkKtX68iw6pP1Wt2xbHxep8Lo0v0YquvV2Nyo6+LtQX8X1FSOmYtmoqoZrFFNXVK5/owS0YQWRxer70d9FTlarswJu8//7/Of0YoVKwMMg9F0Q3pSOZpMJFV8PqOGN8YVWZpUoiOprV95RfWxyeXo8OiI2jM1GrgwoZGFCe1+ap8Wjyw4IUareo4tLypzYLktObw7CD3s924LSxiQZgImkDAoJ1qyDGq/DAoTta1o1BNmDAywAe/f7Zfv5/2b6wq3m4n3IeAMrOs3Y/OZVGZC4f7Y8mXXE1sHbfGx2xv1w2Dt/uGxM1MzGG2Fctus0Jnx2ArlbHTuW9hCx3hYIQy7i5hx2IJihRGhw+/OaudYB1vrUN4YH57HAuN2Uq6ViXDwvjPwoVzSZ8BMGfxvK6xpycfR0H9eBryZEcqurYVerHhOTQM+OoTfbX0D8LTFTMZuENTnxArUEXYNsSug+2mrnstx3IqtmsQN4s5iQeA5cgp5LhgE/aL/dgWiDVburASYgTvOwwI6zPgp9xxGT45RniVJEoya5CZ2eZoNRon/YpeTWGWeryZGrRieCkahTytKfD8bjHohiastQuxUMcqFksQzdv2yYDL2poNR7/hQH3XQV+61EoERAOXEsciOa3WCEWeXtBsdZaAQMzZh98gwRnlnsWo3TGPU7oLGKP285JJLgt8YI+pkcctu+DmMzgyjv90c0+aRvL49Wlkwzlc5WhnrU8do5/79Gty7T8VSWfWrV84ao0f6u1RauEKLZ4DR14ocDdxscyxmUoqOxcqfk6Nnj65bWFej3PK0Dt9zVG2p5nO6bgijI0uzSnSkVBouKrd9WNHyT+RoqiYVvKaD0XR9+jg5mmiJqTndoFypYmSpT9Wr55ke5bvzam0KydH4T+QoF2fObh3cq5dqDurRp17WaDGr1XXNyk8iR+sitXr+7zZpw89u0JH7O9Webg/qnqjrBqENF9apnIiofXWjojUxjS4ZVf+h/hNitGoxtgYJFTkoOkzYtqg4kxcTRWO8ve6jUsKxCt5JYSDtikA5Zna2woXBzTNh642/C1twzND8vdvn8nyPgcrLlhwPIv20K4InzUzFAeZOimCXFAPWLie8OzMd5ToLGp+9FW8Lnt0b3G9nbHN7DR5+czYzM87wGXDOvOdYPStktNUZ22wJZEy862EfftrHbgsAddIIM13ayIs20Bf6ZoHhcsNWQyeroSx+p1ynl+ewddpj1xhbGM2cbOGi3XZf4B5bLq3AMmY8b7cm7rGbov3y3Qe+82HXTnxAnS7P4xs+tDxgDOn0uJLucgx4PvsgbxJZ8G7LNePpxAm0xbTG944VQTG3oLQA8ALFVs9KJsmK+4rHwfN9DqPTwyjfs0vo+2aDUe8Q8sJ9zniqFkYp51Qwyv/EhFpBot7ZYBSaJd4Nq+x0McpzfHbmUtqL2yKxdtzvGKqZYtTnMNInJ4eyIPVODnNDO+x6GMYoC06SW2CM8A7sRIyaBmgfSojjDI0r73bQT15Y9uFjuGJ95zvfGU8ecg6jM8Aouz6xmN7VWq+4yvNajvKeCO3mTQejA8eOKfb084p3dCi9ZlVVMFpatEIXXXzJWSNHY7iYbt2mI2SbHZN/s5GjA33HtOHobv1eYkAXdO9TZGxBeU6Onh26bobvExEVE2Xl1v9EL30967o8xzmxHHszvHlAibqEFl2/RG1vrSR6smF3phjNKaebPniD2tLtUk9ZA3srxqS64Tqla9KqSVXCfKbSdfNdIxrqKOtYc06jiULgPjwRo56fRDmurV96RalsxeAR1nX5f8nqxUrWJ5UajqhxY5syjx7V6PcPKDJQOClGq7Zja6uUrV8magjUg+rtcgPI4KdRdgM0ARpwJrzwGVd2Z7GfvYkg7ILAZ1vJDCZbUmyRcp22aJlRmMnYNcEWOtfL5XTltszwHCDnHSIOMzFbh81QbO2zZcZlua2e/IljGd7V8GefvWeweVueMhn3sOCwtSqcQc3WNADHOwQb3q2gHDM9J5chIyFCBoCSSc6ue5SL8sZnu5fYrcLzbYuYxw0FkV0SdjPYYeF/+kIKcayyZhbhmBEzC88rzIvL1lL/hrsJF4CyAOOdNtJmu9uY4doSxg4L9fm4EdOx6cd06LPTJgaum45Mh/zvmEUvNJgLu+pQFt+ZXnkOZukETk75biHmZB5hi6XdjswEjbFzGD05RhlnaM10FLbI24XsVDDKd9AQOwtk6GRns1oYteHDuJgORqkfeufMxzOBUcpAIHvuuaBvH1XEYpLf+W2mGOU32uLxx1WR8liwYqF+z3veE5RBMhAntwljlBdtcowV9TgDNP3jf8rhO8rmchISjBf85qQmVuKpDzcs+ul5sTJ7DqOnLke3DfRpQfz4ORvHKHgaW6DMBzlahA4aWsd/OxlGg3i+K654XcvReHu7ysz/9u3K0b729hnLUV4bCsN6S6yscndJ76xLqDTQqc0tS8/J0bNE1x0ujire3qrCSwNK7swovbDtda3rUkbz8kbdeOM1StQk9NT9z2pf9yEd/M4+1TXUBXK0q7tLkWhkxhgdHh7WQPeAmhc0a+8z+9XR1hG0kUX1//mHvxs8+8TjT+neu+4Nvp+o66aU1OBwXpG6mKIRvUqOMh4//dEP6KknntbObbsCd2mHbVnXpe9vuv0aXfXmK5VnAZ4Z0JbDO3X/ULdSyZTiiiufPDFGq7qwNVFNFB6eGFupvMVsi4QtNg4i53tvMxsclGc/fn9vC5aB7Zc76Xvt+hG2bJkReUI8SS6DybD1yO4BZhgweCwiBoX7ZYbmeiEixxPQX5dh1xpbdMxcbGWCCG0BMSjNnMw8bHmDcA1eJ5fhewe3m7l5fF2/GYgZq4+wgNBRxCjPgKQsZ/ezBde7Dy6XMcF9yZat8M6SGbB3sni3xdQMmfH0eWC2qvk3MyUzXwPSliB+o0yC2G31tBWVspyp0e9uI/3k3f9Tps+R88LSCi91ML7enYWhGYQwDo4ooU4UXMcHeXwsOMOZDc3gHadhpu4+mik7NsFWR8r07pYFouuwMDXezChfSxg1vVYboyysEGBWOFyW67U7z3Qwyv933HHHuAtRNTGKQGRxRnIj+ucYwfmMUbsqcdm9MSz4WfybzmeKUVvO6RMLedoKRmkTR/aQWdn4evDBB4+bB/oOnTz55JOB0hMcbZDLBe/+HUzzHVZlL2YZd+9AMy+USTnMjXk6iozxeQ6js8PoPTWteuVop4qoJmMYCdpN35jbMffCMy1Hl9Qk9DMrWvX1nl6N1Leo7izA6JmWo3y/cv8BtS5erIU1tXomHlNhjKYnytF8ZkQLGmq140CfCr29itbUCI0qLEe5akYy2jZQVHtTjYhebIpJLQM96kzUKTaWpfb1KkfPBl03Ha/V0N09ak01SKlKeMrrWddlnFZduE7/f/b+A8zO67rvhf+nn+l90AsbCFawd4oUJVFUr5YlyyWxncTO51zH90tu7rVv7v0S3ziOb2I7zXFsy0VWlyiSYpVYRYq9gwVgAUH0MphezplTv+f3nvkPNw5ngAEwAAFi3uc5zznnffe76/qvtfbaa6+dbsioNFnWyK4xpQdSSpTj6mxuV7Y5rRs+fK1u/6t7DhujpVJJm5/Zpk986Zxo1baSqdYm8rkJPfqzx3X9DR/QBReu056de9W3ty/ySgp13ZamZuVeG1F1PKdUIimlMvvpukuWL9a5687VOeedrT/6f/6TRkdG36XrMjE//9Jzo2/GoD3bplXJJVq2comG+kbmhNF5m9ga6N5Y7oEM3SioiN0I+KZDvMeqnvhNIHbvMkhtEQqXzyG+0NIUWrVCC2HI9Ew8vpzWTMHgNPMygC0UHSLdzMDMjuc88+pByLRMbFawzCRsNbRg4V2DyHWzdc11dNshGudlC1vYh/5tkLkNIQj50CY+jIetKz53DqZmJuLnViJR6hxFlbJCpsc7ZnhM/gAw9eQ/4EahJZ1Dj3ts3CbS+Z4P8zbj9f44uwDh0mjl1gwcQJq5mXl5jLzvjr434zEd8x5pGQe7T9IW792w1ZB9gjxDEbj22mujyRGrOawGYYUD9OTn9OEYmql58mOrI3s9aaOVfcpz8AuPD+mxJLIn1JNg2kMe1MdjHk4o3g8YpX9wqYXeKGc+McoVuuVYwFqgW/GZC0ZtLXZ75xOjtBE6Q7A7OuTxjlHq6nT8J1+vPPuYEC4L3sPBKG0myqMnqd77xSSXySoTTLsZg1Umnxih6BfzZu4R9Zk+5kxceAp53HbbbVH5HAEEpi+44ILpFXm7tBm/lGtcUa7rbcXp/Y7R2MCgehTTUEuz0ot65x2jLymjQvEdOYp7aSY/qXJbqwrjE6o2NrzncjTR1KBvbx/RUFOrNDqiyRMAo++1HJ18dYMaOjq1prFJnZU96irH9fIll+iNN9/cT44WJif1Cx/7oC5de5r2/uVfanTPsPK5vP5q2TK1dXZO4/C8c89V/rEndFd3pwpjo0o0NGqCs345xmfqXM6TVY6eKLputEqceqe9J7uui+xa/9Aruvozl+v1595UvFDzXIiMq9v6dMNvf17jI+NHJEdHRkb0m5/8J2pJtqhUKGlkuLavurenVw/d91Nd98FrFY8ldPVVV0cGKeu6tMmG3u50s5StuWRzhbru+RecP33vq7/yC3rpuZejrQWhrptKpvTDv/mRPvKFG6LtJ688/apef/HNqL5ebT8YRud1xdazdgM9vG8/aA+kGYkJ0uk9G7eFKmQUTmcCCAFmJsy3LVEGq91AokZN/acDw71wJq5QqbWvtzduu04QAp3q+7YW0Ta+IY4wIpwVG1tAbZEKLWzkG7rGmEGZkbj93twPkduqR15cBrTr7t/uEzMA94/3cnrfiydqlBO6CNnVz/vYAK4JyVYuGJwZiQEZuo04JLetegDC5z+aUXjy4PoYlFzUxe5CtkDxH8FE/kwouWfLlBmnmbwZgC2XPKdOXLzj8XGABFuvYDL0C3WEKdBOFFwCyMCsuGB2RGwMz3ALXZBcf9MgeV5yySURM0Hh9vgTKY99fqwcwojI13t0PMmifnxbcTZtUT+fs+Z9Cg5A8X7AKP+vvPLKaMLxh3/4h9O4mE+Mks57diwIEW6uj+n3vcQodA4O+U1dHIjlcDFqoXm0MWqXaCKtumy3wSsaHufDwagv3gEfN9544zRGKcvHhtA/vGNlk73CTGYp06vtlA2eKZv6feELX4j6znsCuagDBi1j1OMJfimH9FYmjFHKtpJoOn+/YXTNZFEXlCq6o6UWkOSoYhQFrVBUvlpRairgy/GA0Y6ly1XYvnVKHhw5RvOkOQYYfS/l6NKxcY3G4tpz043a1digArTGuG3fqly+oIYpF99EtayLzjlTMVXVfu2VenrFPu3dvF2rN21Wf7GkamtLtHe/vbFJxY98SMU9eyKMklcj4z8VdI46noxydEHXPbF13Uwuo6FXxzXZ/84KN+kK4/RxVemGrFraWpSIJQ4Lo4sWL4qwZnkcylHq8Of/7S911tqzdNqpp+2v65ZL+u3/4/+j7/zd96PVXE/663XdcgmjRFmxeFJbN2+L3Lsx0Ie6LmU3Z1t081/eppbW2nm1GJJNW7v37tGOyX7FipVoNX8mjM7rxNYEF1rg6y19/h9aYd1BtiqZ2NzpTmsCDZ+F75phGDxmAOEEwwPBMwYKJgtjYxWEgYaQyceb9k3EBp7LdNAAMyO3JVSOQoK3ldLtMWPzYNpC4zwMTq8YhRYpBxdw2QaZFUSXZyXRz/g2c6MOXlUK93eYUVAWDAXCZP+PV1eoD8zM5fsA9TDMO+/6PC7Xx23wBnILBCvnphUDnnFwhMLILaW5OaqDhZFdmlAebW3iG+bk1Rr3JWNotyC7F4aMkDTk636lvd6P4D1x1OeKK67Qxz72sSgtfWElHWA+99xz0bEe1POBBx6I9iXRVvIgPwAMjVlQYSmj7WbatrASCt6rQFYiHM6eutsySJ8hwLGUQbdhYJrQrWouGDVGLGCOR4zST1dffbVuv/32afe4eoza4m6cHQlGLVy9mnGkGLU71Hxg1P13JBiFjqBH7ym1AlaPUY9BPUZ5hvvtoWA0nJiEGLVCweRzrhglT1ZazCuoM2NEHf74j/84MhIZo3wwFrFie/3110dlEMyJSSj9yF4n+oLtBKzGYszgWB/6lPxoH3jm/4MPPhjVgfLsysh/7/0zRqkv3yFGiZL8wQ9+MDo795ZbbjkkjJ4IcjQbj+vMQknPZpKqNjZOBy+ZCaPVecBonPdSyWh/7fGG0Uo8MS8Y1eigvnzuKn37tT0oDEcdo++VHH1txTK1DQ0rtWOHrv/sZ6Yx+rl4QT8rTejlaq3/skzIqlIpntD4qjXaumlALeeeq843NuvUzdvVF5P6mQhffaX27d6tjp6eBTm6oOu+r3TdSIesaD+MUsZrL7yupauXqKmhac4Y7enpicIE2516ycrFSqahzZi+8uVfiDw4jFHKHR4c1o7tO3T+eefvp+sODA6os7tLv/m//hPd/INb9fqmt6Ryrd9DXfepx57Wi8+vV0O2QUsW17Y8WNedVY7m95ejTxXf0thZCWX3VNW6pzQjRudtYhtarezq4wJpnF0oICSHfKYRpLFSb+I106BhtmaE4DXAQ0ZjEJlofN/5G+wGmi0d5M3AWQjbisN/E1ZozXJdDL4o6MGUxcgWFoPH79pa5EmNGZfBFjIjW9nMGNy3rqvbYMK0u0q4Z8OuEVYcvJHcTNNMwMB0++xGxzMDjbFCgXRAA6/ymKkBNNK4z83APO7kbRcNMz/3DUI3tHTZ6mdG6THnHgIHxmv3GFvYABzPUVyxwpl5+rmtmaYRjwF5e1Lp/UR822JEWW4L9Yf5wPR4h8ub7R0Fk3c4g5P+ZP+Fo985f1Z9SMsZYnw7cA4f+pC6mwmyisRz+oRnFjTuE+5TX/LxOPhdW2ZtDZ0LRqkDx9OYvplcc3kScjxgFCHxd3/3d5G7KLi0lTjEqIMDcY/+sZvr4WDUATVMt4eLUWOMeoT7+g4Xo95HdqQY9d4dj4vHO8Qoabzn1PzbExNWdmzxPRSMgvkQo6a/MDjJXDBK2Vh5fdFeykbIMkGmTsYov70vinNn6U/qEkZSxsUdZduKEFg3rjds2KD7778/Kpf6eDXWSgOWaO8V47KCVo9RJsXcpx4e27li9ESQo+V4XI90tmpfOqXmVDLq83qM5icm9JmmihalYto5WdKPy6nDxiiSj95LT/H1w8VocWJCRdrKkSStrfOC0UJTcxTJ+UgwmqoU9S+uO1dJxn3zkCpTK10hRiuTeX351C7ds2NIpfg7GC1PTuraiUE939h4QshRpVIa7OpUbPfu/TB6S7ZDlXytHPL91V/9Vb2+dYsefPAhjYwMR0eMsJqdW7lML42MqKGjozZh3rJFzdkaTzlWcrRhSYNWX39q9LwhmdU5nWt0x9fvidIeLxhd0HXfn7putVLV43c+HY0j+uNc5ahi0m/8r/9IufEJ/fDbt6mzq12F6qQyyUx0tE8oR91nyK96XZd63Xf3/Vpx1SpNXtWk9otWa+i1PrW+rnfpus2JZjU21OjNum60RaE8pis/d5kev+spjQ2OKRFLzojRRcMpVcuTio/VjB8zYXTeJra2WLgzQ9ey0EpiF006289CK5StKw4FbqL3bzMeMwiD189NuAa63SPshmCCtyDkwvJAOu9xMPHynt1R7BZhRllviTOBer+CldjQgmPCtWXH7Q33Hpjpmeht7XS/GlDcNzD5pr/sgmKg2hJmS5XHyfdcb8r23s1wEz3v26XCSqhdJOw/T1oUQ4+/n+F2aCURgkbJsTCzNdPMyO4zLs9WNDMuW8wApsfS/WkrMu3nHYPXe1cNBspxkAoLEm96N3Oj3j6TjPIuvfTSaAWH1ViYCWecrl27NiqHIzy8AmuGjfuiGaGVbvcB7om4krByC/Oxgs/KkPcFOUy79+xZgNB3HksHeYjcT6aYtTHiMTBTC2nmQBiF/pkQ0O+kYSULa3mI3+MBo9CosTITRm2NR3FisuHrSDDqfjpcjHqlA4zYHel4wCjj7Yk3WKUu9Ri1e5Tb4qMfSM/qJ8GWPNGaDaPmUbSb+uPS5IiaIUb5ttCdC0a57/bYDcnv+ND2g2E0WhGTIuHqyNhErGS8wKEVcCakWIytxHKP1V322LrPuO9zNa3czYRR8vK4HgpGTxQ5Wlq2VNmp9s+G0ddyg/pwZ7N+NFhQJV05YozGpowXh41RXNXzOfWnMxrv61Niyl38vcZoQ3uX/tsTm9TS0hjhtTQDRhPVovbmCjqnKaHnR/IqpLJRIK3Lxgd1cVp6bGQ42l96MIwmoTPOyJwKrHO8yNGxyYLU0KTUFE3z/plnrtWbb25SLtc9LUfv2/SWMn0DSuQmlVq8SD1nrlHloUeVWLH8mMnRxvYmdZ7WVeNtyYxWLF4RHc0SU+y4wuiCrnti67oYZM+94OwIRzZCHIkcfeXFV3TpFZfot//Vb0Xlks/4xLhG47Wjfuaq6z71yDN69cWNWnrpKUqenlKqt0G5XQVduOzcqD8OpOuOjo3q+l+4Vt1Lu/Rz/8vn9MpTG/TorU/MiNF4RVo52KRypayiZsbovE1s65f3qYzDTFMpKm8/efvXG4z1QHfneQO6G+aBt8UstJyF1iuX77pADAaULVAmNpfDZcuVLT6hJYkJicv2GU528bCLgYFPHjxzBDfn4bbYwkcaE7iVPxO20xvABokZgAk2TMvlfWBuX8gMzSi80mIXB/KjnwCkLVw8NxFyD4ZoS5P3CHBRlhWvUMliRYc+A4QGgMfM5XLBFOhPrFSh24z7JAzG4m9bJs1gyRuQIvQoy0KHj8+Fo++8Cuc6mB4MfDM6Vv14F9dBzjZFwb3jjjuiMtkvQdAZrwaa4VuhNqMNXWMoh4kt7cQtg9+Amnp5L5MVCSZktkx6ckse9An1o99cjhVb07+Bb7oKLb0Hwii/qRfl0N98jIMTDaP0IxMUC0vTE5cVrWOJUZ4z1uvWrYsmNfOBUdfR5VMmbQ+t4wfDKM9xM0LAEBQjijZah1HonguBiruu3bxI++KLL0b3ye9AGHXfYfVlcojHAhji7L5DwSj9QVrXE4zSL/TrRz/6Uf2X//JfpoOzgCEwNleMOl9+4xHAipH5ueUWgpz0v//7v6+vf/3ruu+++6L20Xaf5Wj6pq2zYdT0eqgYfT/J0X3jGT2TG9VgQ5uSAUbfKznK86Wlkq4tFfV99qYdJ3KU58vOOU8N2az27t6tdGPju+Xo0pV6DYx2tyhV3ariZFGFiXG1xKr623S7Gts75obRYlHXbHpF5XhCP2EyMeXqeaLI0clKWYUzTlGsXNY5L72mt2hTW5O6+vuPmRxNlBPqe36PquWKmpKNunXX7VHwoxNRjs6m6xarZY2Dx0rsfaPrEtytzCQzldRbwzu1um2JMunMcanrMq5Lli3RlddeqY2vvqad23cdEkbHxsdUKtYm8Mboqy9tVGtTm5b2LtOyNUsiT4jCZDGSo+DsUORoKpHS0kqX+t/YLL00rMJIRW9NvnVQXbeSqKhnabcq1do4DuwePKgcZZWaFeeZMDqvUZGtQEbWxoZadEIsCB50uz24M+zKYIXMhBK6Y3DZcub/XBZ+JmR3rkHOZd9tg8vPrAyGyoitO7ZAha4hXNyjHbgq2Gc96qSpjcsuw0TF5bzr2xNaqQxwMx4zMLtreEANMpcd7tlwWbbOhWPiK7QGuR9stXRwIhOZrWa8QxozR97z/gnnSbrwUOlwbwPMI7K6Tp1l5THnPQQ877EXztFMLUhJBzPASuTDzKmbQYGVlv5zQAMYhS2MWLZ5jvtgKExMZ7aShfTgfR60jfKgVfJhdencc8+N6opg5p5dEdevXx/VhXfIIzxr1vRoiyjg5PgXWx/5ZqJgFxorxjAR960ZpOtJW3E/sVXVtBBaeP1N+6kH/T8XjDIO3KeetIn6hBj1WNrSezxjlBU3lKaQ0ZGGaNOsMv793//9tFX6WGKUVXB4B8rckWAUuvjABz4QBdGCTtnjguUW2rEAnQtGPR4IU0cG9eq9955BC0xAzzvvvOgZeKRe1AmhMxeM8ow8PTkFq9wnX2PU2PQ41mPUxiryDzFKva677rqoP+gHgkAR8RjMIrAPFaOPPfbYATHKe0xsTZteSSB/PqTxmcHzjdGDydF8X7+KzY0nDEZ//NYmVapD6CXHhRzl+KCz4zFdVirqaRTdYD/74WC0qVpWurv3iOQo+5Cp/95XXlXL21vVH5OS556tltbWGeXoNEa7urS+vEwNc5SjEUbhHaWSXsYjgeBOra37ydFKsaCmcl7DxYzgrMerHE1ms3rqrFOVSCWUyWYjWXCs5Gh7ol1Ne5qidr81sHl6LN8vui5phs6sKLG4W+U796ot3XxC67p9Y4MabiyopIoSkxX1Flq1pK2zdkzNHOXogXTdycJk5D2RyiTV3NgSYeBIdV0mh5/+4ieViMe06pRVamponrOuWygVdOFHz9OTtz+7H0Yjg0OuorVnnqWNm19VZ2+79m7bp0svuiwKkHioGH38scejepRy+TnrupMT+WiV9vG7n4omxx2tHRENHi5G53XF1svGHiAKNNBsjfEGfv5bgbaLVUiMFggmfjfEVqBwQ7QB7Jm7B9Jp7ZphK4lBYCu9Dy/mPb49wfNGburKKpCXzUOrns8YJX9PsExk3kPAZZeO0K3Efea+MQhN3O4LA9vtcX/bSufN8rbemZnUWzjMbMjPzC2y4oyNRcABkKErhvuQ+kGw3jxvV4zQwgdhkb9XcbwfgfsIEvKwa4cnobYG8Y4jFdrd0X73tip6HHnXDMdWKt6HwAEhe0WpJyHE7dtP2dBd6HZjK5j7yMKS1StWf6knkxAsbJRDO1DG2X/q42Yo0+0JVxnsamNhxuUxIj1pqKMZMuntGukxtDLk/STkb4ucBZKx47EyhuwiVO+ecbgY9WrZiYLRess7tA3NuKxjiVE+BD3g7FQm1tDUkWAUwcrkjfEjkBb0+u/+3b/Tv/23/3ZGjLqO3o9JXkxksTL7SClWX8EOOIU2+e/AE2DIe+OOBKPUhRVihDtYYpXVGOU9Jv7wz5DWjFHK8EpXpJDUYZTJLXW76KKLokir7P8xDXtvky3WR4pR06XfsWJjOrOr27HGaL4xO03vJwJGq7H4cSNHK6WSXmtsUnl8TGeqqudyE6o2NB4+RtmDXZ7U4NRk9mByNKKtwSE1sAeUlc+3t6hrIqeusQnt2rpdlfY2bTtttdr29qmxs3N6P+R8y9F7Fq/WRYN71Lx0qS686KL95Gg2kdC/WtOpDUMTemVkUi8U04ctRyf37dMYQX+mdKn5lqPpTFpljgQZGlJq6ozW40GOnui6brRvOlfr+2K8esLrukOxnPa1FLSkL6NsJa0Ni4d0yVhTtBI4H7puz7IufegTH4ze//Zffy/aunOkctQnY2Qy2UieXrzukjnruipWtebiM7TllW3atnHHjHJ0aGBYG17aqM988rPRnt5Q17XXxHzI0Xpdt5gv6dl7XlApV1K6sWbUtPHicDA6bxNbdyIfu0pRmCNeOrCGLWVmYgY+70Wz/MCSY6tDuDxvgITlGtghcwhdWAxcEyeXicc+6Q5/7rS2fhgMdC7WP68s8MzBCAww2uEjX7wx3wNQ74YSWp9cHzMBt8eDZaJxv4UM0JvQ7bphS5IJ2kRnsPsTBoSwRc9WUJfDt/3wHeq9fq8I31h9fGA290gL6O3GYoFi9xfnB1i8UkgaRze1SxPv8Mx0Y3cUwO5VEcbGG9MJ/kJAHBR2GJDdj8xozBxtYbJwIy9WoHgXMDt/2vWNb3wjUvKpK4wE9wnogHt2m7OQsaXN425hBh7ctxawdoUxjZseuRxt1czSY+oxME2ZVrgsFLzXwm2dD4yGrkMzYTR0reM63jBKO5is2aXGAulYYZQLqyV1M/48STocjBJ+n8kpQgeaD8fbefkcSt7/9Kc/rTvvvDNy24POLSQ9ltQBWjc/M87dfxamR4JR8Mg9MFQTzJlpjDqwCnUzDXmS6NVa6sLkm2+fJWiM4hrMNgT6hPwIaMFY0+fctwB2/xorh4tRT8T4Dy1hbfd4wUNoF4qC5duxwGgaJQnjzRQNL8jRuWM0Dk9tbNSrqQ6t95gFq2eHitF8PqdKvLqfHI2iEzOpHR5UZ98eTSqufQRvI0pqPKEPbduph7Iow8vUMDTMspnyTY3K9PZolHHq26extlaVp6J/Hw05Ct1u6+3VVz72Ma1avXo/OTqBO2C1qou7mjVYquqNcvN+GJ2rHGX8L92yWSN792jDBRfvJ0dZ3dLggCY7u44Yo6TPplJqqZOjUdv7+hUbz2myvVmp5uZjhtGD6bqRnpSqKFaq0fLxhtFojDdVNToyrNZ4o1qaW05oXbc11qCm3JiWZTr1pvq0dqJbTdnGKOjbkeq6vHf+FZdH5Y6NjqmtvVXj1dy86LrPPv68mrLNEdYI8jRXXbdUKCsei+tDP3+9HvnGE5F8rMfo1m1btWzpsgiX1nV37NyhdHtSF33qfD30nUekSmxedd2CiootSWrorSHFFZ8XXXfeJrZcJlaDksIcwtmCCtCY4OgEW4bCGbeJw1YtE6stVGF5bqQ3afsyobsuBpTBwDtYEmzNscXNDMeMw/vyXA7v2y+ej93/IErSMFBhezwg5Bu2wRPIkBn5chr3kxmELRi2epmBu00uz0Tk/2ZO7gOPjYWu92t5RTW0wDmsuicDTuMAKbQfweoxcKhyb1a3Rc2CgP8f/vCHo/02MANWQJ944olpAiW/cI+CLYs+O8/HBqCkAxgEPHXzyonHEJdAW8LMpEI3FFtcbTHHdZEzu26++ebIkkV6LHGUTTk8Z+8dQKfO0IVBahogLysYlOloflbcw8kvl98PXW3M4EJmAGY8ceR9M1Uu/7Z7jy2zFg7zhVELWdO1Mcp/jjmCuX7zm9+cxsjxiFEYOXkda4w6bTjOKH+0jdVc5z0XjPKM1V/vE/vZz34WYemGG26IyuS+rbXkSRAw9oPi/sd/VkbBhZUtK6RWsmgDY4nnA5GCzzrrrIjm5wOjCOKf+7mfi/gFY2GMMn5MRqkj/RWuspI/dImgZWL7qU99Ktqna4wikPkNL6EcB3wiUAWTWvqC+xwxQh5MOD1RP1yM0me8xxjST/z2WYXc45vgUljorVi9lxhdkKMHwShBbeqOMlGxoFPLJXVWK3q5Uo6i9s4VoyjGsfI7Z/tGK3tvv6VfLuaUjTq8olyhopG3tqiiqr5z+ql6/KLztYhzjycntbpU1giyMyYlVq5QrK9PWT5rz5ye1FDPtUsWafnpZ6ilu2fe5GhHZ6fa2tvfJUcZvx/vHNb1i1q0eVJqaGmYsxwFo6N4Y4wMa9mKlcps3aJFw0O6deNGTi2ZxtgFI/1aq0l9n6NfpjyFDhej0SpQpRLxgFCOltBnxnMqQDu7+jS+qBIZhY4VRmfTdTkHtPnG5Up1NWjXN15RrHR8YrRRjYr3DSuRTpzwui6fy9SmWDamS+Lt03WPPEqOUNflevTBxzWwa0grlq3UB6/+0LzJURab1p5x1rvk6MF0XfYN3/f1B3X1p67SZz77Gd19190z6rrZTHZa10VeptoS+sCXro62jWTRLYrVedN1o61Ja7NacuVqFcYm1f/cHiXersyLrjsvE1vvI3Cj3DD7/ntZ2o10Z3tJnwbamhL67fsyULlCFwhbZ/azwNad8WWma+UtdIOYFmRTl+/Z9c0A47etVgapN84b+LYyQLCUawWq3p0irLsVEg9MuPoXtsNgcHmuvwfVSov7LQqhP9VvzsOTS7fffcHlMyC9l4wr3JsB0/NRKggqQBWFC5/Km3a6ntSP3w5VbqFilyBWbXiXaKTkzwoMwLIS6H61khMych8L4iAq5AOoKedrX/uaLrzwwigNVxgcgXbhJsJFeY74SL52naLOBLpgr54ZqVe0qB9HfqCA88z7DMwIUbrJg/u2yLqedoV1f9p6aGuag20YuMaRLfJmcLbieUxMO6ZvyrFACa2gRxOj1JcJEGNlS+zxilFbdt9rjJLfZz/72Wkav+2226aV4INh1DTHZJSLOnglhPfAJc9cF9yLCIgUrZRcemk0aSU9k13yxT2aPkMxdtAQ9usxQWTM2cdKuvnAKBj4y7/8y+jAdtOZMWqaYtWVfggx6hU88EudjFGew4u4T13AHhN9ymEVlcuTOuoIRgkCNV8YNZ+kvUR5pc/YQ0V7KMcru+81Rhfk6KFjtKVU0u801ZTqwUpV/7EwqVgmOzeM4uVQSiozhdHy0JC+XCmoKV7Le6IU0zjdVSpHk+DL+ge14/ROJatVnf/0c2ooltTcP6QXly1SU6Wijh27FC8UtXvHDi06/fTaft1KRecM79JQf5vOuvYDx0SOvlip6PXxrDpWrFB3HUZnk6PRKub4kH71glX6Hy+XNDo2ppsTKeUUj4IQ5adWEK2ntGfS0RFGuCofDTmqYo0OMRrkG2v3wvzeK4xWEzE1ndGp4gh1j0cBqI5XjB4vcvS90HUpg/Fz8KXZdF3alU5k9YGrr5veQnQs5OiBdF3GbKxvQq8/uEmnf/zMOem6I6MjuuLzlwSr7lJPb2+UZr7kKDPmaEW+Ka3ey5dq79tbosnzkei68+qKbEINrS90lv2zGXgzQRNouJ/T1gsDwgNl5mFrZejOYebhhpEmXBZ3ncwMDLCQoE3wBkpoyYoIdIrYXG9PZmxZiQZlyqJLOY7k5b0Rdl2wJdFtDS1+vtwug9lWlzCogBmFQWtXC1vGQrCbwbiNXjUNLWtmuCi5gImy7NvPXjzeR1G0lc97ebjsY+/DrN2fjqzrtppRWqlmcksZKID0oyPG8bHlzUwwdP9zXrYM2ZpmJRcwohz7oHX3EeNF2Y4C6f1c7hfyw8WTOkKvPjKEd71XJDywHsZhtx0UWu9t8R6HkCbMuM1szXhND6F7UGj9dNu5uE8aWwX97B2G887RAaEie7QxSh0I6GFL5gJG54ZR36ffoH0rhBbas2GUVU0Hb/IxEbhZs7+USRUugF695X1WDvlQNx+1c++990b50n7yoA6mcbs/cZ/6kHY+MIrQA5/8xxLMXtsQo9QHZcNHOYQYtaAkX9pqjLK3kH7w++EqNLzH0RfJj7SkQ8Hw3jGuw8UoaYnKSt0cCOvJJ5+MDAH2bqGvCcASrq7YpSyk5wU5enxitKZ0xdQZl04tlrUpmNQcEKM9PWoYHVK8t7c21rt36q6zztdXN2/UQ0pqrC2jtTv6FI9XIzfkM4ZHtfy5F7WvpVkbrr5CmRde0vCSRWpavaoWEbS7UxkU5t7e/TD6057T1DWe18g8YfRgcrSG0ZYZMTqbHO3fvVO/fempakqxWlbrp6Gubk02tyhZKqm9oWFajk5ceqXuzk9Gq9NFMDo1AZpPOapELXBT1We0Dg4rH7jLvlcYjRdi6rt7k5JtGcVKUmwBo8edrjs4NKh4o9S6qklDm2vbaY61rovsuvrjV6izu0M//MEPtfbMtXPWdSeLNVf5ejl6IF03lUzp+R+v1+p/ulKT1Uld/guXKp+b1O4f7p4+FuxIdF3STrw6rJ2Dk+q6fLH2PbxTmVhKqXTqiHTdeXVFducasFxUzBUILXtunBUsN8JuAPavNoDrrU0mCDMWN5p3KM8A9XshOEIXBw+06+wznuyKYUuHB8YWPivx0wckTxGeGZGtDXZbM+GEVj4PfkiU/Kc+9QyoXqCayYT5Oh0fK762jISgMbMLCcdKs90R7NbIc1Z9sOxgpbHS6H2VobUHxgBYHaiHZ+TLc0elI29AxX8UbVtzqK/bRjqft2bF1HTD5fx4jzqa6XpSiRJrBuj+o1yPuxk4v3nXkeeYFPhMStMeTMhuFD7jy5v/uce7tNE0ynMr1O4bPvXuQx4/g9tWXOPG+wzMJC047P4TBpQIceJojbYEH22MchG8IBRY7yVGfd7q8YxRnj366KORixFeC7Ycgx2nnw2jvONjrWiLz4JjLHBRAqNE97388sujfIgWTF9Ak3x4l/7wPhhbO8k7xChjyirkQw89NC8YRVF2/5GmHqO8i1s2+TP5DDGKomEBb4zazYn3vdqNcYD+JJ2P/yKfaB/PlGJLf6HUwM8Q3tynH70/7lAwakWLvDzuzz777LswatomPyICY3X3/qqTUY4WR0eUaG45rjFaSKf1g1JJSzNpnVEuqr1a1un5CW1LxFVOpg6IUdzR85O5KDhScWJc58bK2rNokV45c43yxbKG+/r0gjbomj17NFGRHr36SpXiMSXTaWUzGTV+7EZmiJrwXrWeHqWnlO4Qo5s2b1Zq7Vo9N08YnW85WioW9NFlLWpM1vI8ra1B+5pq2HAU8VCOdnf3RGWN7+1Tz/Zdej0u5Xu651WOluibRV3ROMVmwOjqREmfWdam9QNl/XS0eswwGldMxbfGla/UVj3fa4wu6Lr767q813ZKs9ZesUaTuYK2pbdrbFtuum+Ola5bKE9q7bozlUolZ5eje6fkaHZ/Odq2rEWrzlyp1x57c1ZdNzJwlQoi9DljE52d25JSW6Zd/cV+NXc3KZNLR1GLmzJN++m6doU+VIwmK0ml9yW09+at0UQ6V6zpNkeq685bVGQvZXN5MuDKeOBCi0ZofTKRO1hIyDg883fHhDN3pzPRO62t1GEaE1bY4SYgW9JcjvNwWV7+tkJlgNlSxn+7ANpSYuBzzwB2/e1yYWbNZdcGW0BsAXKdw0E1o/A9ExNp7R5ioPmZ3YFtReHbzIpvlEGUQ7tH8A5KGO59pEEp8xlcBmDorhSBv60tUijtimAG4z6gPuSJAmiXDuqLK6T7yG33x+48BrePwmH87P5BOtpLfVgl8QqOmaC/bZ1zNDhWXrFYmVHb0mUrHQwOxoN7Jpvpo8OkpwLz0GbKoW7QARMTW5ZMWw6+Y2sWz7wPx6vdEdimrKO2oFp4hLTKZUumg4cYa7aemo5Dt+BjgVG34b3EKMLt+uuvj/adOKrv8YhRaB5aQfAh8Lw6YOF6IIxCrw6IxId7YJZ2kQZ3W76ffvrpqL1WUD0WTFhZVUSwhe5XYDJ0QTscjPo4ACsD9Rh1+7wP1TRKP3iSz0U5pAWj0dEpU/yMdmI8A9/Uyy7IUXCbKQHrVVxHkKTutipTD+qIe1ZoMCJ/zti1gkY63LfDqI+mb5djt0Nj0Jg/EEZtfKBNPmv5WGL0eJCjueFh/V9NFT053q8ngiMjjjeMJlta9UZTU3Qe6iMEW5uYUFpVJTJZpeeA0V07tk1jdMmutzX64rPa+YEPTWF0qUbffEubly1WGWNlT7cSVvKm5HdDY2N0jFeIUbf/RJCje/fsUW9DSh9cu5owqdo3ltOmXFUXnHvKQeVopbFBb65aLm3bHu2JrUzxxmMhR7dNFnV+e1YDubyKAxMnpRxd0HX313V5d99ony664HzFYzE1NGXVvqhN8eFUlEeo6/YN9UdnQjemG45IjpYTTExrBtkQo6lGsMuq9AxydHJEPZf0aMmZS6P9sBv/ZmN0jjJt5eihqz56uVo6WtTQmNVLD2yYUddNJBP6xd/6sm7/9p3Tx/4VhwsaKg6rKdWkkdyohvcMqzxZ1sB4LRgn5VOP1Vev0kQT+2bHokBwhbGCRl+o7Q2ux2g8EVdXT5f69vZNy9yYaq7n86HrztvE1kzRhZk4DRZbYcKw6wYZ9810Tcy20DiN/4eWCV9mArbM2PIYnrVkhdJ1CkEcAsvg9IZwPhAuEzYH9LFVDoIxk7P7hevCt61hDsBkZmsAm6FYoXJfuI22lvm5GZTvkdZEYIbqTdyUzYTMB5ibkZgZOz33ADpMy0dvIKRQ/lwfCB7GgbKH2y2A4AL87m/Kw4XJYf09oQ2tLGYwHiszDY8D9TVhW9A6VLk379PPZlrcd4AG2si+INpLObgJ+txHGIDdOWzp8YqVaQql2rRA/R1J0WOLkmHrMuXZCsxeSfqHs75g9uTng6XpcxifGa0nGm6TLcXGhS1rMwUc4p6ZsAMCuA9NC6E11Ps8TiaMQj/e0+jJ4vGIUVuXoU9ohnr78PKDYdTuS9xnAu+xMEZZGQUD0B9t5+MVD/cf+DVGXR7n/DIZ9gH2h4pRLngkLsYvvfRS1B7vO6de4Is6kob8sJgbow5aAlapO/mBIbsMe8WZsaV9lOuV3fDYDkdY9eoGeOH+unXronFmMk+7bASwkuyok0yaeU4+TJBNW3bVYwzoV1v6qbtd0Mx3PdmeCaPkQVAryjtZMdrS1KiO+GgUYfd4xug4+8cmc7qyI6uVzVlNNGX1yMBkFGhqLhglOnVre7tef/45PZhqVK6tUz3G6J7dOiub0OuLT1fXihVas2zZ+0aOsuozOdyvT157gc5ZtVR/ettDGhgZUxG34+6eOcvRKDBPZ6dSQ0NKZjLHTI5WKzH91pObtbYlc9Ji9GTRdakr9bKn1Gy6Ls+6O7s1uK12DBl57dvVr/xQTa56jF+v7FBhbUqNrxTVPzaszmTLYcnR4WUFdV62RENP7Ja2FTXcU1D3YEKtLTVjwl/90d/pQ5/8oM44+3Tt2LxzPzlaeqOkvsk+9ZzbrVRvWp2xmhzluudv71NLT4sasw21ye5UzJZQ1y2WiipXyvrYl27UN//Hd5UfzWndTedpvDSmoVdGVZioaO+bAxGN0C/IafpsxeXLdOplqzWQG9HW0X5NlorK9Y2p/HLtyCvTa1XVaLJ93mXn6fNf+awS5YT+83/6r9q7c08UbTmejmliNBe19Uh03Xmb2NriwOXVPBO+iZ+OtJXGwLXLQ0jsVkzMEGzx8RVant3I0M3BFixbbAwIE4/rabDZXcXAdT24zCwgRO89M4gduttWoVAQeVk+BKiZifvGTMf/7SphFwpbOWytsjBwnvWDbTciMwrvH/Bzu2iY8bv9LjMMU89ziJ/nMAEunhMlDQaC8PEKDQosZdFHXj1CwfN5hPQ3zIM0tJXy6RsfaxNarew6E7qj8G0LopmAachKLnlST0DOux5PlFWYE3WjToCfevksM48RdfamftcBAehxcd9yTibuJXYFZd+EN+rznHa6XoDf4c+9J8AWRq9gue9DCyf5sS8DZYK62/3L4+kVI1+mCeOQi+deTT9ZMEq/sSfUq3y8czxh1FZm7jMB9P5QKxjReZFTdD4TRvlmwmU3W0cB5j0HS6LtrMpC99A8aVmNZGJp/DGBNUahV9LaUMUqDfco32duOir3wTCKcOU3kZTpf57fcccd0xhlMrtmzZrp/cQeT1yDHQCLb7tq1WMUPkNEaAsx8OVD4cG9aeHKK6+MFBPwTF/SJ5RBuzzxMB2ZzmwZ9yTa9G7l1KvN7Dukn8iTepIWnkhd4CsHwqjpwRP2kxGjzV3d+t+3jWukLDVmdNxiNBmP6/9cs0hrO5qjIzIq0FxhUneP5JXJNhwQo8VtbM2Y2qdIROSly9XTv1dbodGlS5XL57UR18Wenggn7yc5Cj1/9twL1NPWUuvvVEadi5qnV5YOVY6yz9Z7+Y6FHI2x+hRL6rk8SvPJKUdPFl13pDSs0y45RTvv3qnuru4oavBsum5kRBmJTcvRxSuW6end+8vRUlttr+tYT0Wx/pKqEzWM0o+HIkezi2q03XxJt4bPmlC6VNboT/qVzr/jvbF5/daorpT/Ljm6p0FDo0PqjHeoUq6TowVpydJls+q6rV0tSqaSmhgb15pT1+iNypsaHxzXwO5B5XYUdNqpp6u/tX8/OZrL5xTfElPp/JKaUlk1pNKaLBZUHinuJ0dPuWClOhd36vmfrNfmkbd119v3qiPbpnN/5XwlqzENPtuv088/VV//w28fsa47r8GjQgu3rT+ugDsxBKoVlNDKEhK0gWYgcIVWIpdri5CBY59upzcT4H4IbPuDkyaM5OV0dBYf8qaODL6thBYErr/LtWJkNwOD0cIoPHvJbTSxmlG7faEV0P1X3ya7uYT/eQ+hY+uZmW/IyDwGpAUgYf957wXpHM3NTAOAUn+IGkDzvvfLeP8CzwEO/YCwNoFyUSe7HnljPnvrUIoNePoopBXqQTrvD0RA2WIXpnc/0XbaQflmtHx8zh714fKmf+6TzgLUluxQEKOUU3ciAFMP3Eko6/nnn49Wu6gn983wSeuJAXU0QMMxsEAwbqzsEuznN3/zN6P6sReTAASszhkz1Nm0Qf1ov1eVjBULrpMJo9QNmvSe1eMNoy7fNBL2L/SPMnsgjHKPSarrEh5hxEqJ20peXExSubiPcIV26zFq11y+Hbqfb0dfvOaaa6I+PRhGaRerqUykQ5qiTFZwwYH7BrzNhFH+c3wO+aFU1GMUmmACSd2s1BmjTPBpB/3AxNb0gFKLMcCBQYxRyqV93hNPOzAIGBtWmkhjGmN8KBf6ohyvYNG3VogWMHoQjLJvrXexUlP4Ot4wGqtWVAWjlbImirWzVauxahS588LORt01OHJQjC7OxrUz3VDb671yVUQv+WxWvemMylNtTZ1zfvT9fpOjjNv9L2/SFy4/V/lCUQViUmSyhyVHo8ksCvTAgNqnXJ4X5OiCrjtfum65UFa2Oa0bfv1avfnMZmXHGmfUdZGjW8t7VU1VdXH+HJ26+tQZ5WhvoUGxrRVVx2MqlVMazY1q7VlnqndRr5556tk5y9HEm2Mq9ZaUyNToAAtLYXVSezfuU09L13TfgOUZ5WilqjW9a5RcOrMcTRxA182PTuqtDZu1/omXddONH1O5XNFrr7ymHRt2qTnZosWLlrxL1y0VSxrcOaQnvvm0YqmYRgfHoomtJqtKJ2u4iCJNn7ZEp56zWk/e/bTKQxUN54dVSVXU29OrhkRa53/2bOVG39lbfCQYnbeJLQRk4jbh2fpiJmAwUSEPpv87XWjdcT620BjcoWJXXwcTPOlDy5pXRRy221Y+MwYDweW6A33fLnSk956t0HI6PchTDMvuHrZqcTlyWGix4f2QGbqvzMRMxGFfOn24CuD22R8/tFy6TFtgbc0yMTitV2y5eG63I7sqOEiSxxarrhkf52M6v9BVhf009GW08X3K4mcrq/fMhO44lAVoLKg8Hh5Tb7Dnv4MEue8pC+ZB/l51cr9zj/pigQvbSpkwJveP3ZdQ0CPr25RrI213SHVoAUXDAXZ8xq0FlgWrg9JY0DjIjxVn50s7HDGWtO4b6mqXU+puq6z3q4QWv9DNxXuVTOsLGD1+MEpZuMZ6dcLv+GxZKyMzYdRtZnWW5wg10yvWWq/ehHhCgeT+j3/84+kjtuox6n2p5P/yyy9PuztTBrhHgB4Mo6Zbzm7lGAG7BzHhZB8xz48Uo7Tb9EH+TCyNUfqMyNAIbO5BC+DSvCnEKHl5Rdh7rowF2myMWmg6uIf5IBN/6kv92HtPnaE3j/ECRk9sjLIy+9tnL9GaVru4VVUoV7RxYDz6rh4Io5Ja8hMqKa7SVFCVaTmaqp4UcjQez+o//ODe6BzZxctWHJYcnRwb0Q2nLdZ1ay7QD55+VesHF+ToAkbnV9fNxhr03K3rVVRRp1y8Um++/oYa1TQduMh5ri++pYnVcTVlMmrpbdbunbsjmqrH6MTuES3pWqSxxJiu/9D1uooI5+iBubxeevGlOWGU512xNm25d4earu5RPM2Z2BWlljereWtt+8GRYnR0fCTaS2sjWajrUt/Xn9uk7s6e/eQoJxmcesGpB9R1q3kpVoipKdmktmybJtPvyNGrv3i5Tj/3tOgoq0s+cqEeu+Mpje8eV7acVXd3h1bkl2uyPBGN16KVPdq7Zd8RYXReg0d534CZrkFl8Fn4m0A9kLZMGfghQZtITRAmfhMp74SEzad+74UZga2GzttuCbZkct97FtwWviFAu7UZWLYSmFG4PFuorCC5bq6LB8tWh5BZuJ5c9VY6L+ebeZm5+Lf70H1i/3kzYQswt8mE4vfdLggX4YqwYT8MaSFcW4dJh8UJJdMR+SiLVRm7Bnqfi/vIQsaE6T00AI9VFi5ow+6AjiRoGrGFMaQJW3BMe87Dm8zDPSbcZ3wZQxQL6u39JlzUhbpjTXNAHrtI2cKK1Q4h7CAADp7BpID8yZe2h+9ZWaHuFsa28rqerALZ6u6z0Di25a677orOKeM5ZdLnttLD1EwfntiY5kyLPLd76gJGjx+M8i77yLy3zH3rvvY1E0YtDKFVojeCUY6ZYZyhQ1xkQ+HPKqWFP5h77rnnIjdhYzG02lMP0lxwwQV6+OGHp/vH4z9XjPIOk1s/s+AzrR0uRr3CZPcyXIIZuxCjKAm0xRj1MQYhRh1cxFFLw7rXY9TBM3jPE38m0/BFVp7OPvvsyEgBNv/7f//v0xhewOiJjVECOv2/G/ZocWqvWgjUkohrvFTVUCJzUIxyvuxF7QntaGjV2VdddUhyNJ/LRe659no4keVoS1fPnOQoGLVxLcTo5acs0kfPrnmnxGO1wIALcnQBo/Ov615dk6NPbtB4YVyNyxuUVc3DINLfKgWVVqYUj1U0iVF0aFB7Xt8d0W29rrsoUYvqDQ4ee+QxXXV1zXOota1VK1eviibEc8VoR6VFo/f0KZ9lFbykVCylpkz7vMjRMy48TSvXLtfDtz2qWCFxUDlqw9zh6ro8f+z2J7Xhmdd0zaeuUqlYVk9Xj3bdvl2l3kmlP3GRTr3ytIhv/Oh731C1GIvk7ZFgdN4mtl4GD93KKDQMxWyLkUFjCxy/Q6tKyHS5PGj1jILLwA6tXQZZqJzxbTcFW6lCBlQPMJ7ZpdGWKOdDPT1wBr2t+waOGZzzZJB89II3yvtcUjMsg9fvWeDUC6DQrdFlhwPtNjpf73cIy48GOGAifJyfLVYQr1czyBN3BrsyQay4RbJXEGGFYKXO5AlR8sHNyH1CvvQ191nluPrqqyOAsFLlQ6bNrH2epYW5nzkQgS01tty4LR5D963HwW6QBrCVfUeGREm11Zdyaaddnrz3gPf4BuRYwwA5z/jPh/4LI0u6j6NjD4I9J6YXvn18kBUV6kl9AOndd98dCWbyDI9hcLAOj7EFjOmeOtu9yPTyfsCoL+d5ImPUmKy31M8Fo1hpWZUwRvmYbsAl/eGIlY58jCLJXjOEMQKPNCigTNLqMUpdiJrMHtXPfe5z0y6+xqgVi9kwyn8fx2MFMlR0DhejKPvub/KmD+iPEKMor578004fTRFi1N++qLst3/UYNa1x38Fz6G/y5T+H2DNp8bFLpsMFjL4/MLqnXFV/MRadK0oU0thUGQfCKL/HB0ZVWVyekxyl3/C2wG32jYcf0NC27dodT6lleERtF104I0ZDObpi0SLtee31aRwc73J0ZO9udRYntCWb1s69+5R77AlVly/dD6O074JzT9N4oagENKrYrBhdkKMLuu586LqRHK02Kz+Yj1YOocUoyGBlUovHk2prbY3kaLo/pc6OzoPqupT/V3/+V/rn/+KfK53KaMniJRodHj0kOdrc2Kx0IEdteDpSORqLx9TU2qQPfuE6/fC//ygq92jquhHP2zusvdv79OZzb6mnt0c93T1RHv37+veTo8lqStlEVoXUkcnReZvYhpvgw4qEliS7I5iQzZhMoH4vBJ4J1iA34RvYJnoPuq0zoXWo3joWunfYncUrjwYX/8OOtELlNrps19P7VGyZI0/KMRGGROl6mJDN5MyYQuuSrXwmHrvPua52PbC1z+13/3hc3MehFTBkorwDuCFkr1wiTGz1gYjsbsI9Vkw4KxMXIgQI+aAAm+C9sdwb+7mHhewDH/iAbrjhhqgs3iOQjV37HKXORwa4HXbnCl0SbBWye4f72u95jEhvy5NdWKir6QpGQJvZHwgjc7Q36kAbXBfSMgmHgTEGnjzUB1CwoOEZE39+o2SjdJsWPW4WOHYFcpRQfjMGvOc22ZWLdpiRmTbDlTVbYn1G2fGOUePkQBh10JBQUJ2MGCV/BAD0zFm1IUa5GHPozEfRsGKLUs2k1tGiEcIo1Oy9mQmjvPOlL31pWjFlVRI6pCzypnzSIeQRkoeCUd8/HIxSti3ztBmcUp4xSlrwRh/AV5hoXnvttdEqNYot5VnY89z04+NZaO9cMMq7rrMx6j4kf9PqyYbRycm8vnr1BXp449vaO5Y/aTGayWb1ZEuPBkZG3oXRmeRoW1OjrsvvVccj23T6vn3KDezVtu0D2p3J6u3zDy5Hx0ZG9PjDP9O+xb3KNTUd13JUlYr+ZS97kHN6auOzKuzJ6erxnF7evl3r8faYwihl/sG9z0ZBu2KlghYtX6FFi7qOSI5WiiWlG7I1jBJRecpV9f2C0QVdd350XfanJqoJDZeGlJnMqCGb1dqVZ+6n6z7xxBMH1XWRo8Sn2Lltl1qaW3TjR27Urp27atGHyyVdcMm6yC33gR8/OI23YyVHd9y9Par7zk27pwOF1eu6TGZ5LzSUh7ruRI64FOUo+ntF5SjmRFy1Y38OitFiSX1DfdOT8aOh687rcT8m5NBdwR8Dsh7MZsLuBKcNrTv1hMlzMwADMGQEbrjzDK/wmetsEFh4myicb2iJCqMJegLjATG43U77+bs/zHxCq5cHi8v1D9saCcupwTWz5vL+AbsjuE1mom6rQW4GUu/CEZ5XBrhRZlF8IU4IBgWWZ2HYd8olyAsrO64T4LArgoW2wen6+/BuB1SCueAaxIpv2De2wFFnW/ZCZuU+t2XKriB247HFyGl4j3S0x0yIy5ZIW3Aj//5Fi6I2ex+BGb9p0udY8qFPeCc67H2qfe5fJhLuEx9JElpq3QaPY71AjvYZTVkdw/FzPfyeBYKFk5mT+/54xahp1e54B8KoGazp52TFKPmxgspEDZzOhFEmdExeKffSSy+NJqK0ByGem3J15DgPjDQhnYQY5fuXfumXIiEZuRE99li01YBxcr+yoovyarwfDKP8ZqJJXlbuDxWjDnDCvmHoJsQoz+1C56NBWK0hCjPlgVvqy7PwvF2e+fzpg2GUccSVG6OAFSkH3vjEJz4RRYDGlZutHN/73vfeFxhtqJR1Tqqq5yrxA2K0MZXUjReuVSaV1N8/uv6kxWiaCK9nXaDq80/PitFQjl5y6aVa9Naz6i3u0ksrl+qB1Wep/7EndP7uvep/e4vSXZ0HlKPInqv+9e9p4M47NTC11+54laNMXB8eHlNspKwtHcuVXpvV5sFBXR8r6YJFCX1rd17plrYp98zaCnc83qhKteZqfCRylG/tnFBLpaq1ubxOrUi3tTQoM8UrT1SMLui6R0fXbU60TMvRw9V1ua668qqonuQJ5kfGhvWlr35B6QxbYSpqaW3RD79z6yHJ0dfje7RmcvFhy9FysaL1j7xSk6Mr9pej5gE3fOp6PX7/k9Orz/W6biId12/+zj+O9upu3vS2Hr73Z9q7q29OcnSyOKnL/+GleuzPn1CsVJu0RkZnYhKUi2pvbj1iXXde99iGIA+tTbYqhEAzEzJx+x0TaUj84QzdYAyJO3yPD8qPQeX3uB8uy0dL/c3N0/l5EzjvmgkYVLYi+gxDd3hojfNlq1gI3LCtIQBJY2YSuseFxF3fL2ZOEI7b4n03dmEwcU9bkevcQOrv2SrkcQD0KL7RRvPR0SjgjC1aMAKIG0UX4KBgsopJWvqX/+Trs+roYwAEM8AywwoKKyvsTYOhoHBbgfb+H0ejM0M0Y7eAMuAdTMP9YPDTlnAsLRQcsj60aJpZUQ6Mjk3yMCDycIAf96tp2Qqx71F/h3M3Q6MMB7Kwa1ZIt3y898HCxfmRd1gvvu0yFtKyBYjfdbAMMxXj6HjEKGN31VVXReX+5Cc/mbYKz4RR7nkvlic4CxidGaNgkkknLoxPPvlklD99CPbAG33n83PnglEfNVIf4RKPDVv354JRriuuuCI6rN7HHxwORqkj+25smbaLIljjP888bgh3Jre01we6WwBSJ9oHXjAU0F/1GCUtedhNz2fUovBgjLN84Tkr21j0uceRU1Y4TnSM/su2uBrjMT2/azw6euVAGP32w89qPF8zxp3sGFUsfkCMvrlhg5auWqWnn3xSvYU+Vfb2qXHFIrUPDmt7W4vat+9Wy/CwJtrbDorRyULhuJejpO1OVvRirlGNLW3qaW+v7aE752x9p2+vmraOKIfrcUPTtByNViKH9+mKUr9uH66oZfHSGTF6bUtMK5qz2jJR1M+G3tniEcrRaKxLZV09Oq51FenpbEol9tmf4HJ0Qdc9cXTdaMve1u1KRfKQcY/p4Qd+dkhydGxyQrnFcQ3tGlV5qKzO9o55k6Ncpp2lK5boM7/wCT163xNThmEioFejtlPWWevWRpNa8r/zh3droG9wzrpuy+pmxZNxrbxmhd5+eIs6Frepb0e/RooT2nFKWW3bx9Vbbj4iXXdeJ7YhOGmwARMKec+6Q4DYyuIVKhO+hauX1LlsnQ8b4sFzYJBw9m6Cd7m2GlEOFnwuBot0JgrycRhsh7T3ABnczs919bP6csP6OA+DMrJeTFlhuGy18UCFTNOrFRBiOJAR85+yYKBgcbkNTmdLqn3S3f9hP5uZUYaPv+DiHUCOsPLkI3Jj2LkzYgg8Z4+QXQcgNit95EVZ7PWzhYW++PrXv64PfvCD0+lxreJCucTSy8oQzMTANmP0HhozbVsRXS9bqLnvPqcMb9Q3fdjy55D2fmbm5w33DoZj5kKbYABMCmg7Y4GbJ+5XPPeePj6ks5WK+tGHxkHoQsNly69pxbTsCW8YEt4CNRRaPgvRq0emJbfzeMUoQYq898xpZsMoQmYBozWMcg+MWfmAjn0OJL8JIgVNIlzdf5SFexTYfuGFF6Jv2jxXjDJxg4Z5D4yyJxCewLhzD+xSvldE6a96jGIZ/tf/+l9H487H/XOoGOWZJ9zeO2Ql3GmpK2XjMkbeYBYa8moO/1FMeI+9iuQTYpRvJrCskIfuclzwK+iW/icPJrTkybaK73//+1Hb3f4THaN/tDevrmpZSqQPitEHNm5VEQVmCiMnK0ahsagPAne8UI5GY7l5q/Ylk2poSqjn7MWazGfVkYqrs29AKaX16hmnKLd40SFh9EBylM+ygT6trpb0ZrmqvlhCY00tB5SjhVxesWTisDA6WYfReLmof/bRy6PJ5R/e/YTazzhjPznatWyZqls27SdHeffXext0ZlNKsWxFL3V3vwujH+5u0OdO6VZLKqHH9ozqoX01r6mZ5GhDe5t+2tigh3N5pVpblJyaUJzoGK3HyoKuO3ddlzbjVlsoTEbnt45PjqpvX5+y0Yrq/Ou6HG3z5GNP66KLL9DOHbvU3dmt/ER+zrpuS7ZJ2fExbVqVU3tfXt3xrnnXdScj2ixr8fLFuuamK/XDv/uRPv1zn9JlV1yi//jv/kSnnnmKPvqJj+jtt7bo3jvuV6VYjfbXz1XXbexsjI5PW3TeYq27Yp26Gzv12JPP6MdPPKFqg9RSZB/8O/uoDwej8zaxneny8raBaGuBCdmNNZhdUTMmvm2tMaDt9hAuP1sx5oI50HgLkND6RQcbrKTD9YA8zIBtcbPFxIDwipnz8IBx+T0D1sKBNGaqHgQzWA+W+4eLZx4ctzckNAM//A5dF0hrV1iXbcYbMfWGhpo7zpSlLXSXoQyEIO8gbKLBR+hOHdkBEyBf/psZofSRB+l5bgUXBkqeBjp5cx/rrUFFH3L8CGCwZeqjH/1opGCSn6OR4kZpN0KD0kB3IAgrkLznMSINQHb7/X5o7XP/mXGjkJv5AUxbH71a5f7kQoFAYcY6hbLMM5jXgw8+GOVDW7HcYeVjMgFjDOnCYxLSuH+bHsyoTUOhe40tYORp9xpo3owqpIHjHaM+f20uGDWtv98wyvuOPGiFZDaMmqYtnL2aTV8RyA03WejyU5/6lG699dZIIEMTDqhEmeZ3h4JRnt90000R7eN2y6rwnXfeGR2hYZdylGkwa2NMiFE+jzzySDQB//Vf//Vo9fbP/uzPojRnnHFGdMyQI0XPBaO0yxZ8cObtDaYlymNiT/+xX4gVXdri+tAOGwW8IluPUZdFHakf9z70oQ9FkahRcHjPQfPoUx+74HF7v2B0Fzx3jnL0/YrRqPx8TovamtU3OnFAjIqVi3JlRjma29untmVLpYmcTn3sGU2ee7r+NN2k1pZFunBXvx5MtSrV2aJRjJkDA2qYOkf+SOUoddgRS+iXkiU9UE5oPJZQZkrxnU2OLn5lo/Ys7tV4uaxlu/fqrYasGhcvmhNGO5JSU35Im0vJKP0pzbVxbUgn1ZJNv0uORtjp6NlPjqJL5Bug25I0te2hHqOd6YTiqmpfrqBvvLlH1dj+kdzr5Wh0LMjUfr/3E0b9bEHXPTRdl3c+9dWPaeVpK6IVVNL92f/zP5VKpo6KrpufzCtWjmnX1j26cN3F6mnv1e233xHJ07noutH2hfQp2rxnt8ZSxaOi6yaTSe3r61d7b5sWrVikX/tff1kZZVUslfS//G+/paaWxqgf7rvrAY2PTESG3UPRdYefHlbjhT16/e4NuuDjF2u4LacPXHG5zjjrFL21Z6ce6v+Z0mM1r5P5xOhhTWzdABNf6J5ga0O94ua09fmEROx79ZvEbc0wWEy87kw6IbSsmXE7DDj5MajkGVrZIAxbHkwstoKY4JzWZYUgDOsdWt/qmVNoGQ3rF1rgPKAmSAdPsWJr5mSrsIEbnj9W7z7iuhuI9a4d9Uxu2rUq8JU3YfEfZZl8YDT0LQTPO3aL8pmTPhSe+7YOQZgAgrL5xtJMvrgrkg5ln3e9l8D9aKZvRdjWp7CPbUVzG/wu5bKy5PS2nHq8Q2sfyrL3T3hsYUDs2/v85z8fuTlioQPQ1BWGxjf5I7SZaOC64kPhPfb17XD5pm8bF2xQMH1zOeIsLjOOOumxMh48WQpp6f2OUZi/96GeSBil3tzz8TM+CsDn6NVj1HWjnQhW+ocJJWfHMmkkL1ZpODuWC0w5Imho1YWOmOy5rBCjTAQRft5HRp2eeeaZ6Bn7ZJkw4moI/YEX6sGRCdwjqA3P+e9+8qo8+ZH3H/zBH0ST49/4jd+IJuIPPfRQtC+V9w6GUVuAUdR8/q4n3o7qaAENRsAhk2D2Htv9mov8rexxH3fkcOz5YI33GaOmS9IyqWXy4P3LpGOFHLzadXkBozNjlJW87JTieaJgtFIq6cMXnqkvXXe58oWCvv3AE3rp7Z0qBN5BIUap6VgsofJUILFokgM9bNmmvuam6Hn6wvP0yvCIsm2tWtrWqf7hYd22a1jp3u7aMSKs7jQ2Tp9AUC9H9+zerTOXL1JjY0r9+/ZpYsp190ByNNW7SP9zzw79TnJS90yU9OLUfsBZ5Wi1quve3q7+pgZt6OnSkpFRDQUrlLNhtFIu69yOrH5u7TL9yfNblGvu1GsDA/rB069ozZJuDRYqqs5BjoLtLatXaU8hp72TZW2dAaPf3TGq27cNqoTXUyIVGWAW5OiCrjtXXZf7993ykBpasjr9rFP1wuPrlYgnD6rr0m+7du+K8hoYHIgCItXL0Xpdl/dv/PSHdenll2jfrn5t3PqqEj1S88oGDa4fUFtL+7t0XQJNLT6zVypLub21SX8mndGSZLvG8zlVEpV513XT2ZSGh4eiSXg6k1Y6m9YPvvZDbd2yXd1dXeru7dFZ685QQ2ODEtXkIeu6hURVb+3eq2pPRm8M71RHa5tS8YRWdi7Vqs5lGl6yWzve3HVEGJ3XFVsTfQhyE5Zn1m6sQeDnJvoQZAax09mtwszDxGvA2d3B+YXlhIRuhsEghJ3j/QJOawZjYrPlwXUOJ4B+x/mEgOQT7lcImVIYTMD9ZSubV/J8waAtgNwnZkL2O+eypSwkcC5vtHb/AAaewRjsGuL+BxDso3OfoQS7fZRlBsRKjQFkZRwAe88H7eC+feJNG+TpUOekQflkJYQ8UdAdXdTjzjf3IHa3j3yczkGauMxM3CaPWehq5WehYA+tQ4CVPG0Vpe4ISq9OATbuUQ5umY7MRh4oFlgFEc4o+FG0vSC6KPWx0IiAFhxObhoIw+a7X/3cAaycj4UK42n82W36aGI0pOH3GqOMDZELUZJOFIx634mtp6RlrK2IzYRR+o73mJRhBYZGUAjBKrTmyZ3b6zPnyI8JMM84A9fC+rbbbpvGqBUoBLPdAZmwMSmE3hHU7NuF/sOJNmVSHvhjX5ENDD7EHt7hFVzTK1ZsAlmhiFMnj7OVmdkw6lVW0jmQhY9roBzjCfx+/OMfjyafuECz0gpG2e/Ef1vQ4UFMyEOMkidbDDAO2Gru4CX0F8G3qLtXa11f6mUaX8DouzGayE9q6Z5+7Vm26ITBqCpl/W8/d6POWrlMsOV0skH/+BMf1O9/4zbtHM3PitGLshXlcDdOZLU4m1HjRE6XTxb1rWVtauisBYQqTR39Ae1l0ml1nXaKmqYCQh1IjiIdPnzDFTrv9FVSNaZv3vczbZ1aqTqQHOV7fPFy/d3WzervXqJ4cKbnTHJ0S1uLiLdePe3U6Nidgc6O6Nv0cCCMrutpUa5UVqyxhlFw9sZETFu3j+m0NWfOWY7mJgtKNLdp15ZX98NofnBIjcMjGsqkND51NvCJKkcXdN33TtflWty7ONIfJvomddaZZ89J180V8roztl7FclHlzpJW7W7QumztODivrIZ9Av3TpheeflFnrDldK05dpsHJAe0c2Km1F56hZ3/6/PS4u82RJ1FjVdd/5QMR73ny9mfUt7F2jF2lXFFDsrb9Zr513Y5FbbrwiguUm8hp8ytb1JbuUHtLp3Yn9+rSSy6L0uzYvEPVgiLd41B13WxOGr15s7KXdCv/XL+ee/BxnfmPl6m9vVXJZEo//4+/qD//t187Yjk627V/GMQ5XCbgcHZuUFAhfxucTu93nIcZuS39IdNwQzyAZiwMEh/SwJg9kFY8XCYD4GehVSp0rwjrS9rQyuQ6OD8/M8Mg3xCkHlzXm8sEH+ZlK6AtERZoJlIzs3DPga0vfg/g0D67wZDevvrem+D+4TlEgyAkvVePICLy4R0UYQ43//SnPx1ZZMxkedcCHEsKoEUIua52DYFZmJnRJwhq8gBIntTynBUf8nr88cejUOrUyQqrx5V0PgMsBKZdsNynXCHRmxnZKoUVGIuwLZoGDGkddMNMnf8+zNzRYr0xHgsz+bIHjxUbIuf5bFCUZqzRWMx5RlleWWJ8LHRCOraAcHs9lqQ1HZIvF+kcDMd05/6wkmJL5smCUWg13FdzPGMUGvIkjzrX7/+hT2fDqIOqsFppSy3pwCGRG33IeohRn3sJbTrIGWV41Zc60x+smPI+wsqKD5Nc8sJ1+MYbb4wmfODHPIb9vLxLHW3x9SqEacf7eUOMcsEPqIcx6nE4EEapM6vJBL5AmBmjPiKBizy/8IUvRM9phzHKqjB5g6PZMMq40H7cpesVPCtTTIQZR7vduS/4j8FhJoxaQXKk0WOF0TRuaVNj+V5jNDORUzLAyvGO0crEmFZ0t+uclUsVLxWiwFjD4zm9vWef3u4fnh2jExPauGdYz3d0q9TYoMbOTrWfe472fP4zuqBcUX7qOIsQoyUmcr29c5Kj+/b1ae3q5UqnMOAm9LHL1qk6tY/yYHK0NrldVqONg8jRxtWrVD79NDU0N0cYtSvwweQoGP3ma7v1fz/+hopNbe/I0eKklmZrk5HZ5CgYPZgcjaKhDgzp7OEJxaZobz7kaITR4DSCk1GOnqy6LgaWyy677IC6LhNedFBo89WJLarQjcmYKomYqlOGFfqjL9+n7GUEehrbT9eNXIQTGd1184/19b/4pn7417dp0yubtXvrXjWlmmv0OjaqD3/5OrV2t6hQLOjcD5yjcrHmPbHn7b3vkqP1um44Toer6xanDCn33fqgWuLtSsZrxvdQ1z2YHD2QrktZWaWV6iuqq6VZxXJB+wb2KT8xqWKhqNu+foe6Orpm1XX5zEWOzlvwKFtJDHZb4D0IoRXN//1t8Njy5rQGYWjlcr4GUZiXLez+eDDN8CwgDD7vMTDQ7d5gVwQPisHnd6MOmgKTFVQTiQfA7TIDC10tuO9z12yNCutsBmjLi98LXThcTxOpidL9Z9cLW83C6HFmxr7M2CAinrFSw9EWkTvQli3R6gSrKwDFTJXyyd9nTKIQ2r3YbhHcR4FFuNrtEiI0g6S+AB+wuJ5YF8kLRRuwemXE42vrm8fE/eJ+ttulV1k8ebAlyUcuuDxvnnffMC6k8YTRefEMoctqDQwLhQNmh4Wc9+kz2ovlmQkAz+2aYWYRMmzXwf1p+nT9Sef9f5THXkQYCf3NJIIVNFsdTWfGh/v6aGGUD8LAbjcu/73CKKtr1CXkFcczRgnGBH0TNRFh+fzzz0fPPCn0mMyEUR/NAVY50gfBQttxQYbRM6GDLvnNO6ycQqPs+3bfQjvsG2WSRn4OpmRBRHugPbDm/UhMnIlkTZr77rtvmjYjYd7XNz1O1B2Me1uCla4Qo95LZSUXa6/dD6lviFEbbExn9Be/PZnlGTzHfI9yaG+IUY4Z4h60wPuzYZT86U/yZyLPPuJ6jDpoHP3MuJl3MKYoPfS5g4qAU7ebfc/r16+PgndR7tHGKCmyk0UVG7OKg8upbSXvFUbHWps1ytmHJwBGU2Mj+mJXg14cG1HlxecUGx/XH766W/3lGr3HOGM1Vp0Zo8WihnDla41puLNTF19/3TRGX5wY18S2beqe2st6OHI0kUzpf/zwx/qtL35MT7zyht7csTs6SmeuctQ86GByNMToocrRfLJB2eb9MXpGV7N+/qoL9Oaefv34jT3vkqMvPvWEOgd36PnBvFLZhlkxSl4dpbKSlaqW7BvS9q62eZGjlaEhXT44op8t7lFqKqLy0cbogq57/Oq6YK0/169cIRe5BPee3asNr2zU6UtPU2dXu96ujiqVTOuSU9Zq1dJOjb01oMZTG3TmaWcQFF3lSvlduq7lqOv59PNPKRFLRjilTuOVUS0/bZm+9JufU3/fgG7/27v1yiMbtHTNEk0MTCidzMyq646Nj+ns89fqqmuv1EP3PRxFKg4xOjIxqnS8dqbsgXTdoZGYhgaGVS5VIq+PmXRdtuhQ3yPRdSv9BZ395TUq5kv6zh//QM0tzWrrbFVXa3cUuKpSrGjX7t0qF9+Ro1wtHc361Fc+rtdeel1PPPD0jBidt4ltaDHycroVJIPRgPSgujJmDJ7NGyC2KPIsDNltIIVlhEzZnRi6Y9ltwnVxHUJwhtYhW63snhOuRNh64Lrbhc/vWEEyowiZv61nYR2dZ6SMzLDv0kAMAeo6m3jCb0cIdSS0UEgBNL7tamiLGYyeiYoDTvBNlE9c+SAqBJSDJTkiqPes2cIWCbQplwYzLu//4L4j0VEO5ZEXedu9EoGDxfZHP/pRpHS7X7m8whVa4xDWjsDmdHaL9Hh4lcSWZpcVurjQR+Eqk90deYbQ84TDR6VQf7t3ki+Axh3DFkLeYeUGJmmaN/jqV2mdtxm72+G9EqYbmK73HDAZot/JH6WF+8Zc2E8WlEcDo5Fy0dExbQU13b1XGOW+DwY/njFKudAPdM7H7+Peiossfeuo5GF0UC4f02NanQmjTLYQzAR0cH35RlCTr1dhsbD+4Ac/mLZ0Itg9fty7+OKLddFFF0X5zoRRygajIS+hzqZfsEZeYTTGEKO8j6JOmXyDGSs94bmy9Bv7euEjuC+bn9Rj1C6Q/EfY1mMUOuU/fIc+4z+rzfUYJe0tt9wSuVQz2faRISFGqRd9CP3zzHEAoqA5HR1R25hggE3u8U0aP7OSc9QxiiW+NKkK789w9MV7gdGJ1ooKU8rY8YzRixoSuq6tQdepqurrb1FB/Vy2qr8t1FYv6jEaytFFvb2KVUuqTh1bMxNGj0SORudoxuP65sPPadWpp6sz1qDkCSBHX3ibI30K6mlpirBQj9FTkgVd1R7Xy29s1/qB2eUo9dnS3a49QyPKdbQpM09ytAEs09fsV5xS0I82Rhd03WOn61bjVZUSJbWn2tXc2qyWasu0F9RMuu720e066+fOiiL4RnWvSv1P9dcCR3Vn1Z1q1WVLz9ZX1n1CrZkWOIU2DmzQ9vHt0co/7sIH03UtR22Iae1qidrdt7tft/7VHcqkMiqNlTTw2pAas03vwmg0XpVytLq75qwz9MnPf1LJqTGvl6M7O/OqJHM6ZZ/UMIscjeh2UvrGf/lOJMNm0nWZ1PY3TkgDhVnl6Fx03cmhSW1/abt6T615UMSqMU2OFZTsSSp3YVWFsYLaLuhW/onaSRDWdRcvX6Rlq5Zq9449s2J0XvfYGgAmdP/3vdAtIfxEhU1ZjPwxUMON9KEFx4C3y0MIQqepLy+0DvnjssP6mwmEx6z4E1rbTBjO324RVlzcNi/1O38Tphmc6xhasFz/+vJCJuM22UXI7eUeBOmVDgsou9O6f1zvcGwcJdTl8A5AttXWjJILoJKe8nnugDNYcPiN0EBok548YBYIFu55zxBKLfmyimGXRhRK0sG0uO/yfG4VdbJybBoJV7i8d477DtNu5ZrLrp4wMO/7jVy0plxbrGA78p4FNu+xR497MEGsV94jaLdE8gL8uFh57C0wLLhIY4XZadxG05lpwzTt/YOkjQ76njp6hbxNN7zD2PEbZmTX7aOBUcp0G70qt4DRg2OUC5rkYuxQbFndc90tFEKMch/lE0wQuAgLM9iZDaPuH+fDPUeK5EOQBy4CILGCSL24B+74Dd2wDxcFnDIOhFEw48jIlOkzno3R0LLvPiEdQhRh6MjGoZITYpQPE1vyYH+vj4Cox6j3JqMIX3PNNRG9hBilfPqANqPQslcWd+aZMEpbeOY9s/UYpWzajwFhOmDQ1Eou40DdzW/oH8swxu2GG26I8kA5OOoYxTWuuyNaIfX9BYzODaOvFd45PmRvsaznc0UVK1WVqqlaZNODyNFMJh1tjziacpRJ7VwwOhc5GrWlUqYxR0+ONjTqX/3d7RFGv/ilL70Lo2fEqqoQjGc8f1A5yopqvqNt2n1yPuRojDEYGNa67Tv18qoVx0SOLui6x07XrcQqOuOq07T09CVq6WjVpvs2a1HL7BglYFO1XFUsOSVH+/NqSNXk6ORkXuesWqLSS8O6560f64s//4Xo+Kgz2tdoRfNKVatldX66WwO7h+ak607kJ/TG5teVLWS0/e2d+sk37ldjtoZN43UmXZf7//5P/p1y4xO67977oy0Jom/BcoDR4bERjZ+WUKwsjQ8WFJ+MHVDXxTMR1+wZdd1iQeUrm6PNqi89/NqscvRgui5lv/TDl5VMJ5VKBHJ0aFjNYyml2lORDBtP5FQcz0/rum+8tEn9eweUTNT2Ms+G0XlzRTbhhiALGxgyGd+rZxBh2OZoo/EU4PzxFTKL0JpDebYwuD71FioG0vmGne16OZ33dtqlz2UZiG4jv63g2N2D+yGo3dbQumWLn5+HfRX60Zvx2TXFwsN97nwhIG9c9yZuLrufuFyPi63AdolBMbTljN88I0+7JDqKnt2YHLEM4YcARlnD3RFQoIC7bVjDbC21lcrHgiCwATwCx6sqKID483PRDi677llpjvbZTAXesUWKd32ftjsapMfHEeJQqA16t9eApK/4eAWW+45KySoYbiQ8Y0LgSG22snM5ijTpo/DuU3n6Ci22VgZqjLLmwhkKJxQjj4tdPxgL8mQyRL1s6bV7D/2EpQ3XN95l9WkBo8cXRsM2P/XUU1F6r0TMhFHvKfKZqrTZrr4zYRR3WISNFSTGCzdZhKiFNnQMPXvyCa2xSumJIy625GFlgnxDjGI9tQXfXhi8Cy/wKrCxOL2PMMCoj6ggD+iVPcNgHUs2ODVGSf/tb387MiiFY1ePUSuhuGaTFnx897vfjSzlXrWh/uThM5FRNmbCKHl6LGbDqNsVYpQ2EV2ZPoDPwRNpsyfu99xzz/TKiF3IFzB6fGI0FXvHMPTH/QXlG5qjCW0iWTmoHI0ib7NScgCMhnJ0fLBfKzqblFm+/D2To1GAmamJwdGSo55AXXDRRRFG6+Xoo4MjenTn04on09N9OpscjfKcwtV8yVHeubu3KwqQ1cZ2hXPPXcDo+0jXLZaK2vb8Dp33wXOUyqRVqtaO7ZkNo92Zbm36dm0POO1buXylzlxzpt56+y2NpSZ02is9OmvtWVHZG17eEL3/4P0Pat1l63TppZfo6muv1q3fv01PPf3UtBygrvVytGN1u1ZetExXXn6pErGEnr9nvfqrY2qr1iZrB9J1L7h4nWKKacuWbXrq0Wf0+sY39ev/9B9qYO9AZAw3RtuaW7XkrSGNdFS0uKlL+YncnHRd8PHIKw9p596dildqcnG0lJMSsWjFlsO2ZpOjc9F1I96T2l+ODg8Oq3hXUbGlSXVc0auhHYOK596JrcP1V//v30auy7PJ0aOyYlv/264TbmwIeIPEE4JQQBhc3ldhtw8DyuA2OK1oWTExiL2/wEAO9xeEjIDLPuC84w3fBm1YB+9fiM5Fm7qcf1iOQe33zaBC94/IAll35lTYZ75vIgldNVwPg9zt9F6JequYLWL19XL57mszOrsfuZ0wGZRYW3oAj8fVlhkUYs6jI/AUF64KDzzwwHT+gI0yAJHBxeWAAPxHCfe+GJ8jy4fnjjDnjf+2ZnGFATdwAcHKhIBHSaDePIOZuA9srXak1ZBZG3h2t/F+QxgTCixMiuc+QsXnolFvn7Pp/gzdfMzYHaTCjNx0auZN++xiQ1lWXDwuHmePOR/qwFmGjIujW56sGHWfHm8Y5bfxELYr3N8U1otyWOXwmCBIUAZnwyjjjkJLemidC3r0SiITXzAIRv/iL/4iUqbvv//+iNbYq8xKJLSGUOObMpl8+jgvC2fq6RXa6KzKU06JrLystLC6aqUhxKhdn7igVd6jPrSR1VSEFG0JMcpvVm5o91wx6v1zPnaBsuAd9Ds0A2+Yb4zSJ3aZYqLud1xnBzdjz9ICRt+pQxnlu7n5uMLoRLxJ/2JfrczJeBKNOTqmZzaMul4u/5LWpO4fG5uTHE0Wcvr0miW6dffQcSFHcaNsnPLaOpZytKmlts2CMo6WHB3r26PeypheqmSVmYrUHsrRTHNz9I3xYAGj7y9dt1Kt6Jwbz1IsEY/ciqNV2Mn8geXospocpV9Wr1od3W/INCg9nlbvst5pOXra6adpX/8+9V6wRDsad2rR2Bad0n5KJHs6ett0/U0f0GR+Uv/zP35tOj4GdF9qLGrP9j3q39qvC3/uPDW0Nqrx9DaNx7Ma35fXyl1NUT1m03VrbYyraSqoFTL7b/7s77Rq1eroWYjRJaU2tW2fUKxNhyRH4y1xXf7zF+nhrz8e0W47RwU9l1NbIauepWccFV03MkxsLGlw477o3N9oFXqqzsZST3fPATE6b3tsTZi2ktRbqGyhCf2haaD95E3ABky4T8CgsLXKLgd+HlqgPDih1cgACA9z9qCaKRgIZtLetxW2MayDCc2EEVq5wr0XISPye7MxI7fJ/WbF1swjdK/w79Aq5hUe9yOXx8JMljqHzJcLQvSZXVz8tlsGH9LxDgSPgomFxWc38sz7PF1fW2UYN6w/KK24OyJQGW9Wh8jHQWDsK4+wJS8fdeBjQsjb0VjDSICU78vlOSjG7/zO70Rp//RP/zSqLwIZZSEM2mF6sRXd/en8Q7chIk2ilLKaxcSCvqLOtvgS9MYWT9OAsWCFxf3DfVsiQxcbCwMu2ua9VtyjjnbTMd2Hrh20A4s0ygx9HlqETyaMct+uqax4wHhdr+MFo1Zs5oJR+h6B5f2uHse5YNQrlEy0UFKh3xCjnE+L8KNOTCrdL+SBJdeKlyfSdsknL6/0gFULa/oaxZT6hBi1gGOCDI2CFVZt2FuM2/N//s//+YAYDc/dmwtG2UNMHXyurMePetI2FA4rMkeCUcaDfFjFoi0IZybh3q+0gNHZMdqan9RotaqV+YL2VaqqNDYcVxid1DvHkxCVdK5ylCjUr43lVG3Mzgmjb7Hi0zesD7U36NZtOXX0Ln5P5GjUT6WiPpmsaP3okPa0tKkrldDv/Pt//57JUY/RkWK0aWxQZzZndNMprVqcTer7O0f0yERFsQWMnjS6bjqZ1gs/XK+tz2xXupqWSlI8kzhkXRdeX6/rPv3K09rQ8rpiZ8bUkGjSRHJC47FRrb1oTQ0DiZji6ZiSrQmN9I2ooTerzqXt0raqCuM1zL50z6taeu4S7XhsmxrZZ9pU1kh+TNVCeVZd9+knnonOxeU4nt/93d89qByNx2pxYOaKUfhLsbuglu5erfvoOXrp7g1RXqe1LI3cp/fl+qVK9ajpupExI1Y5ZIzOe/Aod4zBH14GjjvAxGPitSXHew0MYrujGBhmGAaSgexOtEXTrngGjQHk+yZ+/w+Xye3GEVoXTBxugyO9uS3eH+dBcD/4vXBg7G4SKrj1z/y+22ULCP0T9qXrYKuTicqWKLt62PoWEoktaXxQyiBAr3J4XNwPHkOUZO8PdEAUnvsMLy5cpLjn6KEOtsHKE4CBILHYMv4owtTVgjGy3k7tncEli7S0y8zF+yl419ZMu1G4zli3aQ915R75Iuztalnfn7ZeWWiEAsL3UCj+7M/+bJpuTIfOxwFBQoZhRhtaHL0iHjKT0Brl8bawsVXZTD1kVHaTMWZo57333hvRwJVXXnlSYtT5QANf/OIXo8i2Xrk8UTFqNyn6GUWNFYW5YJT3L7jggghDDlDj/gGjDoAE3bB6giLsFVXug2kmsV5F4QKDCE/T4gc+8IEof8blpz/96bSSEGKU/7SB93CL5mJlFwGMEIXveBVpvjDqM7LpN4QgeUMT7idWptnvZPdwC2UL4FBJmw2jdimlf7wyxuSDQGAOwLKA0dkxuiKX11cqMd02WdCWpsYTGqOWow2NDdo3NhLRw1wwylE/21uW64UdW7U4URbqfojRYyVHI5dmVbUmIX24Ia5KdUw/7DhNbzz0gPay/3BsTOPNzcdMjpLP5WefrvNOX60/+cbNhy1HGcc9xaI+1ZjQkmxNP/niklaNbB/Ry/E/1IvzAABf/0lEQVSap8ACRk8OXRe31/h4XD1LeuZV1+3o7FBzf6OKq4s6v+sstcSbFE/EdPZFa/X2a1t1zw9/osnqpC77+YtVKhWZYWrTk2+pMdakdHMNR6edco42v7xZ7Zk2Tb41qbFxgkKVFKtUD6jrvvz8q9EiDt5WR0PXjTfHtOi0Xi1bs1TP3P6Cqp0xxT6UjdrYWCppz3e2To+tMUrArajfy+8EEjuWuu687rENreu+DDRbZ8zA/MxAMpF7RcqghWDtw+0ZvKOczZRHuKIV1sHAMIOgPrYmQeAh8G1psIJjRjptQQiW2315r4OZhd+3y4T7yINlhuf8HWTE9a236LlO3A8tXQay/e+dLrR4mWm4/e4n522riZlDyPBC5mUrEaACRAhS9xurOyjcHjsYQRgpDcK96aabIsWWslGGvbpKWiLDkYcjMrv9PmIIl4iQfijTocxDayLvMC587r777un2oMCSr/ccuK1hNEKPcah4hePm/Yne50jZ/Kd+TAi8ehO6EZGv90O4TR53043L8EQkpA//DjHkfF0HLgfS4h5HuPzP//k/oyNZTkaM2tWOPmGl0/R8omPU+YZtCC3gs2GU544uCsYcoZyPLZ2ktQsWe2vI9x/8g38QTaCZ8BI8wmfkuo/dP6y6kA6MImTcf5RjjJpfOuo6Y4GlFSWW56zkIqRIM18YJV8mzwh5jlOAFhD2KPveN0x/UR/cuPj/5S9/OeJR/+E//Idp/jcXjIJ/+paJOvjjPcpxhM4FjL4bo2O4/MZi2j00qvyUa+CJjlEuzmLMBEdfzUWOkk9zV69ef/ttZV9/XOmxCVUuXDerHI22vVQqkUKHIWo+5Ch1GuJYkGpJA+WKWuJx/eKezWr9wd9rWTym3sFh/dEbr88rRg8kR9sbM/rSjddFzz957eW6+/HnpvF0OHL0xZGCnhjM65qOjG7ZPa7BZFbZ5tq+zAWMnjy6rhcdQl2X/bcEIzpcXddyNPfcuNI3NuiS087Ri3vfVEe5WY2lFn3kuo9q0/Y3pY6KJvO5qLzc1oIa0g0zytHmhibFKlIpVYpk1oF0XdpA/IajpetO7pnUbX98Z231unuRdu3ZrfG+MWXasoonav2VytSiHkMbI6Mj2to6pmKqquU709Ee4LnK0fnSdQ901TjpHC8PuituBccEa0uAlTETuv+HezsNCBQNfnvviPOyJcbWB/838w8ZjH3SQ2ZoC5Dz9rsGv4HhdrnTvWHdFq+QsbqzydP7Btweg9DExWWrnOvhwQvBym9HInRau56Eqwru2zCfMLqqP5TvvEJLo+ts4nGYdJfvPrc10XV0kJivfOUrkWJKHwBOjy8MDFCiUGIlJvgF7ke4PyKAyQNLMm3FQsR/VjvI3wwdi5nr49UX18UWs1BxcFtwRUSpdf+TH4EqHAIdkJE/daR8mJNdUcykec9MJPyEzNYRIX28iQ/9hhGFQrjeIubx9d4o06ytnnbX8LiZdmzdsqWdy8GEnLcFkiNKnqwYpd7f+973opW59wtG7Spl5QDF1tZ097XdDOsxyjE40KUntsYov6FfJnccTs8KL0GcmGiCS85fpV5eLcK9eyaMkrcDwVB2PUa5OLuSY4ZuvvnmiD6dBxhiNRXXJ2PUe9HqMWrLtds6G0bD/Yrkj+IM36EMuz6ZhvhNO9nP6MjKFrIHw6gVDOqC+xfP6c8FjM4Bo5WK/r6teXq19v2AUdPjTHI0UiaZFGzdpomhoXdh9Oxzz1V+yRJ1lfIaGxyYVY7+5LZb9MI3/kxbfnKL3n59Y7SiOx9yNF4u645cSf9yqKjf65/Qs4OjmkAvqFTVpKounBzTC88/f1CMHqkcpa4fu+oSDY+MaXh0TIu7O6eNeocjR6nLS2rQm4kmfW1A2pdqVENLLdL0AkZPbl13Ip/TxtwODeZqQagOpuuyZceyLtR1o8BHe0Z16+0/1q3PPaQfPv2g1j+xIZp8cX38Q5/QxO4JDQ+MaHK8oBXLl8+I0Vw+p44Vbbri05dE9w9F1zUNM7k9mK47eQhytDop5UcmI4x2tneo70c7tPX2Tep7cbfyudrkmnSThUltbxpTrrWqUkba11CTscda1z3QBSW8M5U/yAVDcgNC8IfAMRBtdbHVyKA1o/K38wln9yZgM80QdOEEwh0VWm78O7QeuM4GU/05Xn5uNyNbOWw1MvNxHnYTMcBdpq2T7gOHxPbAhAzL7fBARwQzZcULLWPu6/C3D182YwiZoNsTWuMcsRSLFKsaXICWD8+96mAmZYbn1Va+iUyGqx8rO+4LW7gAP4qiN4fjToXyyF48BDXvI7T577o6oqP3DGEpcjAM+sR5ObqpGaCBYyWfszh5j7qFgQ947vZ7fPgOj/sw/bovabf7wfTkYBy0j35CqbCF1MLX+xDNSELFxxZIynP+Duhhpdxlm4Y8qSEt/eJzCU1r9czv8ccfX8Do+wijTD55n5UN6OCXfumXogipX/va16bbgkCDZug/RzN1lFWMSj58HiyGGAVzTOhwceQ9hAWYph8I0MB75E/50FI9Rvnvfavk6fP7ZsMo7bv66qunz3hlUuhD3r16YYXCOCB/JujkQd7wDtNhPUYpA88QVmCZDFAfMBoKdepEeisy9NNrr70WWeRD17YFjC5gdM4Y7e7WjcmCbhmpTSYsR8cwIA0OqZFjoE5ZHQUvMkaLk5Na3dau8tPP6MXmRjX39kb5H0iOrl65Qlfue1XjrNjsK6nQsXje5WhWVX1sxVJtqUi7BwdVaW5V3H2Zz+kr56zQzRu2K5bOzqsctTG6HMjRhqkI7gtydAGj86nrIkOer2xRR7lRKxKdam1pPaCu+/KGl7X09EV64t6na8GU6uTolh1b9UpXn0qtCS1Jd+ii8ila1NQZ1Redd2CwhtFsZmY52tffpxu+eq3ae9r1V//336mtuW1Ouu7AcL8u/OT5SmfTemv929r05ObpiXq0at+cUJXTgEo1V/L4pa2q5ssq7JyQ9uFlkp4Ro5yRO3x6XLH2tNbs6dTqpSun5Wi4x5t6UBYT8y2TfWrIxZVRbaJ6rDE6b67IJiq7A9SDy8DwFfrNu7K2SljpseUoJP4wr9BqFlqp6kEeMp0QCN5cb4A5Hy6eRS4Kgc+9rRc8o6O9+hFGbuMKy3KdQwucLZXeP2DCcLtCFw7yDs/X87fL8eW6W7F03/odt9tAdTlOb7cXwOf6WzA5GJMFdBQgY6p/uB599NEoT/rE4+S9erzDbxRyHwTt/sClg2fTwAsi3XFZsYW46YeQYVrx9X8zQ7eXtnGUCmnCiG0GmfurXiCZoYbWUTNbvj129AlpaJODGITM1m4cnowwKYCBeq8hz2hXSMu2qoW047Z5zEK6D12onD58N6SVBYyeWBglLXX3GEBndkNi3E3HuC2x+kkAJgw4WIdxZwoxSpmsVLIaSwRHJsG0j2chRhH27NdjYku9mAhCjwhj9hHh/hgJrlxumh5DjEL7/Hb75oJR9uRSriMjoyQg6KEpJrvUwXWkHj7qhPrhMo0Llvu5HqOOAEv+rBT7vvcdIlR5h2A1tBmM+kgkKzILGF3A6KHK0UKxqHtGctG5rW43eTaOT6i5Ko2desq7MFrYslWvtg8r2dutMzZt1vjpp0/jcjY5ms5ko3NfG1XRFZm8vvbyeiWbWuZVjubLZd26dada29uVbmqJVjtKU66NHzulRx85Y5l++tYu7S29c8TO4cjRVDIVBegK73NF0XrT6ai/FuToAkYPFaPRJClD2UWVq6UoMnKo60ZtjRW1/Iwl6t6cjoIreRxm03VjKem87rP02V/5pO75wX3vwugpK1Zr1/CY+lRQLlGUStVITmN0CnXdXGVmOZqMJ9W3s19vvvRWdI7uXHXd7mVdWrSyV8lUUu2L2vXaY2+oWpkyQlRK+shv3RAFelp/76vaOTig5jM7FUvGpUti6v/+JmXKmVnlaIxjzjrSSg6+Ezmb/nHE5nQmHf1nYg9GU/0pjWt8euyPNUbnbWJrK47B7csVNqD83CALK2jrg/NyepicLfBmBAZeOEkJGanLCO8ZeI6SaQUm3P9IXaxYuh12IXEaOhmgm0DtghFaxMy8vCJgF5OQyYUD57zC9jjP8F7IsEzUoWUq7Gu3xZYS8nNfhszHROy+dWQyVmm8t8J9YNcBuzhw34ohwMVNkRUPrFesfqAo4wpKOgsnfP8RTrSDPWkAI7JaT/UBz3xUSCgYoQ1cJEmHEs8Y2HXB9Q+JnW/vM5op4IstQ7Z8uR/t/mALWWRdm5rwO8qe+5R3CUzkultp4H3eQVH3IfcwN+57kmKLlGnC/RwKSNOt3VW8AuzJs8fOdQ9dcTzG7yeMhi633jvyfsOoJ12h4QU6QWjSL6RhwocQYbLHiqSP5+Fd07MjnZMeXPKNG+6NN94YpcUKHGLUZ9ghmMib1VNo1sdYWdmsxyhlRkcXTLlAs6IKjc8Fo1zUgzIdEAt8WukIFUb4C9+OyszxQhiOfPRQPUa5PAmA77z66qvT48d/3uFdVqa9YjQXjNrtzzRjTC5g9B2MJlBEqMuUFf9kkqNc2YaM8slkpJBOy9H29poxaQY5mj3t1EiO9vb0aPuqVbr4/PMPKkf7Bwb0zS0juihb1Nmdzbq6M6/18dkxyp7cqqqHLkdjsRnlaG9LY+TSd0ZXqwYHJg9bji7bul1nFIp6qqNNk7098yJHObKoIZXQF65ap1e27tIrO/YJBC1g9OTRdVOppD7zC5/SBZeeP53nGxs36Yd/f9t03yJrTv/kGepY3aH+TQPatHGHsvmsBoaHNDkyME0DlqPWdV96dIN6envU3tKmPRP7y1HSnZleonNG09o1Pqzu3nYN5AYOSdd99ZGN6uro1gXrLpizrju4e0h/839+Q1d97nK9/uybUf9Y102ka4auaryq/s37VBzKaTTbp1RHRo1rOhTvSqu4Y2aMUuaS7XGN7Z7QZDKjLUNbavUoF5U4N6PTmxfrFz7yJQ3sGdDPHngs0k3ea133qJxjayD726CpZwRW2jwwturY9SEEeJif/fMNMjcuvELA0Al0iN08vNcgZABmDqFFyYBxJ/q+Vy1ChhA+C61tboMZhfNxHUPweuLoy++4n8L7ztdAcJr6FUiucPnfZXpSMG1NbmyMFGS/Z8uZ/fttzQuZl/sIokM5RPiwsoMwpn9YeSE9930kAcoyE0HuUZZdCb0JnvSA3OPmYwp4H4EOY+G/QWLwhUeo1FuG6vvJrjG0OaRPjzPPDKgICAETdR7UlRUlW/NcliPsTbtl5HJRW5lIeNWYd320gekltJY6LzMEC3gu0np/pGkznCSEwiOkmfcTRv/Nv/k30QTtW9/61nR57xeMUmcfFVPfbiu03mMCvpjc+YxWsHHFFVdEgoU03/72t/fDqGnRwVlCjPLbNOnf5Ms4+OxkY74eozxj/zr/4SGcoUuZc8WosQXfMM3TB3h02FuEuvAe/31+J6vQxqTHe9WqVVH5uDWzZ+mxxx6L9iDhqmVligksSgaTfcoiMBZ5OuDOwTBKe5hQu97k6eMJFjAaU7VY1K+P5bVRVd3bHIsmPyeTHAWjnbu3as/4hKpLlx+SHN2ydeuscrQxGdM1q7o1nC9q/auvqLm1Te3t3bp/ZFi3vtIfnWep1MwYZcx+5Utf0KmnrNJtd/9EE4V39gYerhx9YUefvvvCJhXTDdPK8MHkaJuKunxZt+54c7eqU0a43cuXajiX1yV79+mJJYujtLPJ0a1vb1Z+Dhhd2dWq/99XP6VkIq4bLzlXW/cO6P/8xu1SrDaeJz1G3+e6LnX+xM/dFE1qnc5BjDKpWnR+5zX4/IC6T+lSz2ldal/Sqo3PbdHGxgEVshXFSzFdujc7jYtQ1x3oH1Aul59V18UQuyzeFsnb0bERTSBTm2tnNR8NXTf6Llf12M1PTmPeum4qltL9f/Kgll+8TMWJopqTjSq/llehMqHCU0PKxpIw6WnawgC2s21cmeGqusrNkbzsTde8qqZjfVySVdupbaoorm2lHbrwrHXK5yZ11633HBe67ryt2IaArCdorvB++J4Jz6DwNx/7eTvMdjjJMCDdCS7H91xWaI2yi05ocXInu+x6cIUWN3esAWVQe/ncLjghAwmtdi6Xj60PLjtsj8sN6xFarcK+df6hdc+C1mki4p6ygvodMxL+A0gsy/xGIfSBx+4blEXex9WROqAEEjCKCRv/GSeO8eA9+987chz1spuFwQzBo2ACPEcnpWy7LJDOro3uJ5QGB7DhslLhtqH8+jw+W/48NjAKg81MwuPh/gr3t1CW225rdUirFkwGW1gev7HwcaGcUCdWpDx2tkiH+/xMLwY/z2HQBrZp3vVzf5newvsh9t5vGIVOCUB2xx13TOf/fsKox9/lhcIbhRmhR2AYsMG+UbseQye43OJKSz5MCsEKKzMHwygTV76pTxRMYyqQCWnslcF/K+ekJ49opSmbnbYmu//47z35R4JRLrsE29JtjDov04WPQCKIzuWXXx59OHeTvgNn8DTj3kcX8a49SKArT+rDvVWzYdTtM72GdHuyY7SpUIwmtT9LJxWf6puTSY62NDfrplJOL2zt06NjOWnNGUcsRydGR/Q7N16qjpZakK1svKrHtvZPy9FYPHFAOcr/7Tt3avWyxVrS3qL1m7dP9/XhYvSVkZIKsaQaU6k5ydHR0RF95fxTdN7iTu0eGddzA7XtOgn2tycS2jlUO57EtFEvRxvGB/SPz1muP35oj8oHkaN7RyZUnFq14/+yrvbILTOWWJCjJ4uuOzw8Gk20MlmMK1I1VtHwyHA0YbSuG60EDsf0+g9eV+e5nRp5dUSntC+JJmuvT+xSOh/TxPi4zl179mHpunhSZRYldc0nrogMfD/93iMq5mpGgf6B/tqRRenMUdd1KSMVT2nrY9uViqenMZquk6PWdaP3FqdU7K6qc9M70bhdHvtu23s7a/2aULRqvWfvHt36gx+pv6//Pdd15/UcWxNkPYGHxBsSfVhJg64+jX3cDRILSYM3BJjBawILARcC2mAweLjc6WFdDb5wMML62moVgrreehZaG7i8t82DZ0IO+8oD5sEKLRUhIzGhO28fNcMFsTgKot3mzDy9N8Wbv/kNkCgDS6n7ydY+ymCl1S5MrLgikHEhNEDIB4Cw1w/rzi233BIRKoLJVhgfw+LxZLJHmSisPkieVVCsX6S3QHad7b6Mtc0ugCj6jk5ni5mVDvrFx3v4TMHQPcpgNbPwuDi9mZTpxWXyDOXYG9vtOkGZ/Oe5mT/v0i+sovnAbFvsnK/H1BY2XxZ6Hk8zC4+5x9Djb4uv6bresvt+wCj99t3vfne6Du9HjEIrXskBl3ygf69+kBcRhHGttQXV+1i8GgsmHBjmYBh131iAIBg9WXPfW+EiH68e2JJMvkwoKQd3QerAhPFQMUp94QmHg1Hj03UmD9ro9CggHv+f/exnEQ9Zt25dNCkgyqWFMLh2n86EUT6skvMOfJAJM/W254lxdzJjtNzcpAeztfMlcX896eSoqhobz2txvqCO8QmNBnIUGVAuFqMJ7tDIyJzlaCqZ0Pb+YaUSCb20bbcefGOHWlpaD0mO3n3/g1qXqOjOO3+i1mUrpvnMsZKj8XhCb/SP6tzFHWpvyKilpaaEUzelUnp9yaJotX8mOdoTL+qrF56hVZ0tuva0pbpvS/8B5ej4xIS+ds8j+o1PXq9kIqF7nn05cqlGkV+QoyeHrvvovY/rmUee1ZIVi/WpX/u4hidHtKOwc1qOWteNtr2UpcJLBaUraVXyZa1JLdHF7WdqYnRce4p7DlvXpb4XXL0uCsUL1Sw7bYk2PPZGdL7rmVedrkxrWo/f/LQSjTWvRTB8pLouPGhH3y61N7Yema47WlFlSUY9vb2KVbWfrsvq9+ZvbVTLqe1aduNqPfvoi/rZc4+oq7Nb3Z3dB9V1RUTqJVVVC1VVdtcmvSGujlSOzltUZDo9BFO9FcgE6/8hEE34diOwhcj50SgDwh1kP/PQAubLnRfm5U7inq1Qztcb+m3hsHIUWuRcT++LcL6h9SoMUOT8bF1yf/ieywwtaaEFwlYol+M6e2BDtyb3X9j33HfQJMDiMrxa4XqjhHLRL4yhzyhzVFDvr/PxISiu7jsrkO5HiB5BxX3cMAwUu2qZAXksbJmiXFaBDGyf2+W9dMUpRYB6ABLqBtPwShH1ckAdA9TgDQHgfuO5LWDhngULa8q0G6YjB4YTTOdNnigQML36frRyQZ1/8Rd/MXrnrrvuilxo6ctwH6AZuScWpiHeoQ/4kN4uoqEwM4OyILCbyrRV/ZVXFjB6AmIUGkXgOJATF8Yl3sPdmH2sBE5C0Bmj0CDfBFXi7D2wOheMui0+6xJa433SovzaqsqEjpVgK0rGNXilDqw8kScroOQPtqHX2TAauje7DrxnV7JDxaitzfTbDTfcoPvvv3+aHpyfMWoc29WOiTnvsjeIjyOvhhilXKz9RFrm/0MPPRS9y/FIPjPQVv0FjJ68cjSbyeh/ye/T4KZ+3d2Y0cjaM/fDaGLXLl02MaHnzz5bzVOyYq4YrRbySmQaoqBRhypHoelPDe7V5mRaDacu1Yt9Y8qVKpGL5AExOoUvlNEjlaOVwqRakjHllIiO25mrHE1NDOv3P3mVMom4Hnl9i/70kZdnxGgoR3m3q7khmswWKlK2uRaAZ0GOnjwYzU3mtGhdj06/7nTli5NR8Kg379+k+O74dLDTo6Xrgr/lq5brY1+6USOlIaWTGT173/Pa+sZ29Q/261O/fZMmihMaGRtRIpnQ87esVyKXmhddl76Ahg9HjsaCgGhvdQ5rZV/NwLRq7QptevmtaBXcGE2mkyp2VNRQzKgj0z4nXXe8mlNscUadH16l4mBe+R/tVDwVV9sp7VHgq2RjQntf3qvyRPmwMTrvK7bukNAiFALVaUNLl33nw6X2MI0tMWYABoktC75nq089QPyeid+E504xaE3kYT5mkiFYw/a64w3iMK3rYGuX01spNKEZ+Aa533W9uee8DBz/Di13ZpZWGEM/foiAZ95XCnEbwFYmHfiCy3tmeB9lDqWX9Fb6SMvqrd0OzTSxEvPbTNVuW46u5/Fy/Smbd6ws2xUQpkCbUKTZN3fhhRdG7oUojt/4xjemV5p8hAG/HdTFR5yYYYduKzwPXSctHEPXBkd2NX2YNqif24DyTD2n9xtM7a9ygB3Sei8kdWWFjai07EW04LNQ8mTW42I3RwQ65YTCwendX6ZHMyoLI9PAAkZPTIw62ratqTbuOBgD7yFQSW+MmuaefPLJ6UneoWAUGoW+UTChPWiViTP1Xrt2bfQNfWOlZmUoHDufQ8uHlUz4BRiywj0TRrl30003RXVmEkp+BLZCKNoifygYjdwaE4nIks2qbLQPamBg2mLNRX+GB8VTJ/5jQIDnEASEb/OOEKNWYnwUGpMI+olxcv/wPHSdWsDoySdH+R6vVFVSRYNdncpOjfc0RjMZ3dffrxxnHqfTh4TRbEdX7UiQvr5DlqPsKW8c7NcvrFqmti98XNt279W//dadB5SjnLX7W4N7NVaVvtbUptLUBOrw5WhCY7FE1BeHIkcrlYR+uLeii1qlN5OdUV/NhNF6OTpaKKu3vUvdC3L05JWjXQ2aLNf2KnOt+fAZWv/Nl5TMJY+qrgvt79m5W5lSVqtaTo3yf+OV7yuVTGsiU9DLe9/W8rZOxVMJxTiztTOl9EDDEeu6UUDTlZPqejOncqF02LpuZ2en1o6l1dDZoKauBn3o569Xa2+LHr/zqf3kaGbsHRfsuei6mUJK+b6CSiO1CNtcLV2tOvsL5ygWhw5LGtw6qEquctgYPdD1jl/FHC4XWg86W2NCq5SJObTKhAAO8wtdHOoBZzB7IlDPTJyfwcHAhWDxzN+WAIPD4HL9whUKlx0OVGhRM9GELnxh2z3QrgOX96F4lY6PrUMGkgfY7TAxm0Ct1Jl5uM5hH5LOllALw9CC5j0tBo73DtjVEeXP7bf7HcTMt6OW2TpkIKJcQugORsVRHeSFQggTIY2fAwqUaoSw996akVnJx8UxtKTBbLDMkbcjqZKOSYD73efk2U3EK0MwCZ+NxX9brCwYw30FXH7ffcjFu9QhOri6s3O6TC7awweXUb4pD+uY62MLs8fINMczWx5dTy7abSYVMn/Xz+mpky3SCxg98TDKN2PNmXkXXXRRhDtwhFsStMBkk/21LifEKPtsqQd1OlyMsoeX1VkmeT4uB0FFeQhc6gUds4IMnaEIhDTsb64DYRQ3YOgcN2H+u87XXnttlOZIMEo+DjjFPbtphRil/T6zm/dxLaNOs2HUlvEf/ehH03uMKRtLMX1gpWEBo+9/jJZxG+3rU3znLmnHDk1OGZIixV3SfQ1terurVZW2tpkxyirTlNvgfMhRG5YOJEej1dFYIio7mUqrpSGr+EHk6OqmRjXHYnpKcTVM7UN/L+QozwbyRQ0sO1vpju4FObqA0TnputB035P7tOGujZqcKKiUn4rd0Fs7P/po6rq1WBgNuuNHd6lcLOvW796mRb2LVSgVtbl5RHc8+4Sef3WDfvatxzSyb0TbXtgR5TUfum45VdW+5bX+mg85uuz0pcqN5fTo3U/MKkfnquvSloZiSkPf3aTqRFkN2Qalikm98b3XNLxtSMWJkhL5xBFhdF6jInOFoHQFbEnzc3/shmJAmFGYeA3GMC8DxhMernClkcudYcDbf9vMAYL3c9fDS+ahdc1tMaBCJuL6uL4mDA9eWO+Q6YaWuxCUtuQ5LRdpw8E0EwnrEa60hhZMr+SQ1tYNiI8jBACLV4L8Ds/ZUO86hedMEZCGfAAuwLJl1YwJhmBLj11nYZy2arOKARBwn6QujopMeeSDG+DDDz88TSsR8QXtZmXkhRdeiOpF0A1CqvtAZwAKkPwO97331QzX56/Zius+994FM373uffgeNw9xuRPm8jDKzO2jIe0CQOkn8wwiHBJevbjURfXy2DnHTNU8nC9fF6Z6+RxDoVViKdwH4KDbixg9MTDKGX8/M///LTrF+kQtLa4g0cf/XM0MEo/Eyn4kksuiYQrz1CgyQ8hitLsFROOIkCo882+GuOP8qmH3YBnwijvwwv4mN7pByIYP/DAA4eFUd7xPiXqbXcs6jJfGOU35+96dY6+wBU5DPaxgNH3N0arO3bqE/mCUlNRdnfjIhiT+tNp7b7sYnXnh/Rse4cyU/tbj6Yc5ZPc+prSnUunV19mkqO7t27VG+WyhqsJnf7WVv3sxVcVS6aUStTO9ZwJoyPlit4oV7W+s1upqUA0C3J0AaMnmq5b3FbU4//lcVVUUc/aHjVONqqcLh9VXXciN6GnXn1WI4sL+uubv6E1Hafq1ItP1Z//4G9UbItpcWuzYuW4yqMVPfvDF5SspiK5PpuuO5scrdd1bbQor2xQ5a0xNaQzRyxHdz2wS4/d+aSSSs4bRlOJlCZ+vFPZTLa2dWmiUbvu2lmTo+X5kaNHvMcWAjI4QrCHQOYyw7WFJbQ8+bLrghvhjnHH29fczMAEbYDZFYIL5unN5M7DliyDxMDmv/M1CA0YMwITtevhdvlyXuFlV5B6q52tZSFTM2BDVxye20/dllLSmFjDlVfn5/Da/A9dW3zZVcN9T3k+XwtC9ZmRzttuHbgh8q73lLnfXTZpLDxI5zzJC+UchoNL1FVXXRXV35HQcJ9EmXY5uIFMb1SfYiwGh92XsJ6ZqXj/nOsCEwj3pdgNwyHVXafQEsjFcwtu92EogGwtMz2QDytpWM35DzMiPxgj78F4zIBCyyoM0pYmj6GZty2AZkAef1tcXW9jJhQczt9C9plnnlnA6AmEUbed/+yl/ehHPzrd97glkReY8YTzaGAU2iTN+eefH92nPMpi8sr+XfBH3hyjgzsWgtz1oAwCK7FHl3b42B54CpgI+8dC2VZvcMmKKWmJfO1xnStGqStlcbEq5oB4CxhdwOh8YzQxPqFiKqWLJib0wdI7db95Ubfa2ltVrlaUWrHqmMnRPbt3a9/bm/Tatp16+4XnlWxpVdeKFe+SoxX269KPuP+1tiheLkcRl4uJWlDEejkaYZQ9uFNjvyBHFzB6ImD0eNB1oc1t2X6Vz21SZjyuz3dcp8aGRt18+y16OPGa2he16h9d+wl1Zzr093/ybRUn3tkPTZsHRofU1dah1pbWWqCrWI2m8rn8fv1Tr+uCy53JIcUb02rZXQv0dCgYLZVK+uIvfF7Zhqxuv/nOaJJ5omF03vfYhtZC36NiIQDNFAyAEDS29Ph9g8oAp1GhRczA8WUw+fI77gTy9MqHwRd2Zrgkb+CagNw+fnsPg+sadrTzJs/Qehb+dr7uA5frOloIOE+fl2pLJ8TjPg2tcSHDDa1nobWG9M7Pfet+gQBDS50tftQPYYrLnd0gvGoTWvqiCI5TbiXkZ+sR9WbPAO+TBndDVmYsSCFK0tj1wlZd94U357PK630GAMqrPeTjM8DsImIG7T4xw7ALiss2bXkcbH0L24dbhRUE0wntQxFnTwR54iIKA4JR0s7Q0mYa5N1pi1oQTdDjHNKjP/y3MuCxdTrX0ZcZkK3WCxg9MTFKGlxc+djKbaHBc2jtQBjlNyuoCCFol7KYmPJhwmphNhtGKQ/FGddjvvnP8Tnshf3MZz4TTayvvPJKPfjggxFm3Y4PfehDUXkoyWATxQHrLWfOkj+TXurkvUhWJqzYMVFmcuo9SoeCUSbYtB8MelWZdlEX9sDyfAGjCxidF4w2NynOnrn2JXodt0/KTCaVbW5Wv6pKj42qehCMclZGUzqp0Vw+cg0+cjn6kQijqe4eXbxnp5oG+7S7UNSGVadO0/DElPLb09WlwX379Dunt2qyktEfvbxnOspqKEfrMbogRxcwerLruvnJvM5ee5Y2vvraQeVoIhnX8hUr9AtXflanrjglKh9dd83zu9Xe1aWepi6pQh0zyky1a9P4dhUWJZU4q1HlFweiFU3y/ORnP6GzzzpLjz/2hL777e9F8mwmXZfP0lK74mNxxVtrga4OBaMdHR169KeP65/9i3+qRct7tXHDa6pUyxobnlBjrCl6frxjdF5dkWey6PheaMUJARKC3gqcidSdYyCGeYaA8Ow+LMf5h/l4YEPXEBNEyGxcL+55sEMGFFqxzNxchkHjtnCFVrx6ZmQQGnSuU9hW152LtHbjcx0NbFvmUDRNTN5r4b5x23xocgho7hnYFmYophCnz5B0HwB4521iRIGEIXjSyTu4EfOcMvgACK6f/OQn0Tcg2bhxY+QCYmbDx6HvQ4sd+fK+rYLeP8Ok10TvqIeuD88MLlunQkujgTGbMPBEm7JgJN6HYbqMAmxMTET14kP7UdxROkhrd0XTjIWVj/UJQc/loD+2bJrGTN8OdBCmq1c+vLnedLSA0RMTo1YsjTe7WFkozYZR7jGpBXsIHiaTXEwujSGs0QfCKPVjDy34REiTH25GXC+99FLkkkxa9uHynP5jdchWYPe78Uv+DsRxtDCKkCZCMfzE/MIKFXXk3gJGFzA6rxgtFmsYTSbVMHU8zRgBbFjdPAhGVy7q0q989uN6e8cu/dUPbleKsybnQY4mMhlNlsu6LD+hUxjTtzdp06lnRPmFcpSe3DyS0/LWpgU5uoDR9y1G51PXpT7/9Ld/U02NjdGEjzwOhNG25lY175R2bNmu0cGRSI7izcRRPMm3q7r7Gz9R/94BlfMVNTXWApzFxyoqX5RWNV7RRGtNfkUnJCxZGmH24ssu0g9vvuWoytFsNqu/+K9/pa/+5pd1ydUX1gwhxZLuv/nh6eMEj3eMztuKrS0BIeBMkCFRGgDhxwpQSMThFVp8QuuV7ztPv+fybbmxMkhaC5bQPcMDEn58z3Wz1coDMZtlqp45+FM/sGZsrrd/O0BD+I6ZFJcVR1tG7DLi9hq04diEezPM7KxkmuBtISNviJZ6AhQzhTACHZfTA2xWgiB2CN0BWWAC5O/jNUImwKrM1772teg+q0KAilUWFFCA4E3ytuJw0S7KxppsQPG+jwSiLgDMY8596hweeG56sSXPbhGun8fNDCE6GL6hYXrFjOesYNE+9j+g/KPQk1cYLt0MJ3QxMnhNAx4Hj4ktb6bRkGZttQotYMaazxs2nXkfVP1+nAWMnvgY5UO+MH1j1IGRXF9wB748jrgMhbTOSiqeDyFGKc+WcWOUCSx7Xambg8rxjMBV4BWMEiyD/MMJNZNmohKHASbAooU/+bhfjwZGcUMGiz6GgXLAqoPpLGB0AaNHE6McL8N5s7EAo2OjI8o21NwhKRO6/MR1n1KlUtXqZUv1m1/+nH740BMRludDjj6quM4sFtWTTOiySlEvEcE4WFWxHP3JeFqXjO1TKp1ekKMLGD1pMHq4ui6Y6empueJef8P1evThR/fDaKSzFmt7SKcnvMP7lFkaVymV05nLTtPzLz+rPdv6Ikzkt9d0XVyUres2xbMa2Z1TpS2lrr0xZVfU4kTccfsd+sov/7yK8YL+wW/+kv7HH/+F4rH4UcPoxFhOt37jdq27/NyIX933oweVSqRPCIzO28TWM+iQwELgGQjuYCobWo/825aS8HLjDOqQafh/aNEJLVWhdanexcLvhP/Dute7SoTtMOH4uZfZw/q6TDMO181MhG8PqgkgDHYQ5mtrG5fzDJmF61V/kbfzsxuMrTR+x/2OsoxghGjN4ExwpHXdPEYmRFtr7JIYMiUzMn6TjkBRFtgOGIEFy4zU5VqQ8x+m4TP17L9vBgjzuOyyyyJ3rDvvvDPKy1FOsWK7jh5300a9FdBAcx+ZmXqcUZL5jQvmP/kn/yRiAv/tv/236UA5YSh+yocBct+KgplraMX0JnrXzRMM19cMn8uWtnBcTQv17uC8b+vZiYZRM60TGaPu56OFUfedseF9sNAcAs6C2uNB3l4B4j0UX/bHXnPNNVH53EOpfPzxx6NJ4ac//enoHSaouBmRPzzBY4OQZw+sBSf3vd+OPDgawWfwUQ8wz4QWoUmdfOj84WDUvIn/DiDBRX4+M5ezd3/jN34jqjsYhXfMhlHzLq+SmaYWMHoAjNKuQlGVuhWfBYy+g9FUJaHKFEaLk3n9qy98WM+/uU2PvrEtwug4ro4jo+psb1NVVS3t7dHoyPC8yVHckR8cH1E+kdZoa3t0xIUjJNfL0QcTSXV2Ns+bHM0z2WCMpyLfRnVCpnOEyhRGD0WO5gf7tSaXj44C2V6sanciu4DRBV33PdF1a+WQX0zXXX9NlP+Lz70Y3ec9/v9v//Jf6Lvf+p5aVXO7L49X9JNb7tdNX/yIJifzyjRmDqjrsjKafiOvwsSw1NAVGa9oz5uvb1KhVFDvoh69+uKr6unuOWw5WpiDrhvJ0X/0jhyNVeMnjK477xNbM2B/TKwmmDAAgzsnZAohSFx5E43T1Fsa6q1eoSXNxOy0ztPlGMChNcFWBL9Xz1hMkG43V31+JlYLI4M5ZFj89nsedC+ph1YJP3cfhwTqtocM0Wnch/4fWtjqLSFcdkFyWaQJz5P0eVp8EM7OG0K/4YYbotWbRx99NFrpIQ372lgdsv899wwglFtvesdaSzkwG1aSrEzDeHw4Pb+tuPr8PEddZW8OEVxRxP/jf/yP0/miTJMWpZX8PR6eFJPOfW1LnpmarZ+kt/uKaY60TKjZq0h/UV8mC97763YabB4HMy7TkMcKhd/7PSLgTfW3z0fzuJlxON9w3D2+dvEJ3XJONIxaGBl3Ic0e7xi19ZRnrL6Ewnw+MGoFwBiFnuyyz29WPxByHDVAP7JnlbaBIwSQ3ZlJD82dffbZEUY9drxPxF+C0lAuLsde6QSzPorAiigKKnmDATCK0s2kmYt6WHn4wAc+MH1ECavAlHk4GAXjv/d7v6fvfve70V4l0lFH8P/jH/94P4xS/rp162bFKPc5I5tAH9SFSbmV/gWMHgCjKKwxqcIKA8oL70R5JFSd2up0vGP00uaEMvGYHh8tKRmcJTofGC1XKso1NCszhdFTutu0tLNNyy5r1wWnr9D/+PHjSjc06a9vvkO9nZ268erLtG9oUKVyRR+5/vp5kaPNTU1qHR/QnvZFkecEGC1MYdRydHzHTrUlEjWMLuqdNzmamcjp4n2j2tTWpKGejujZFRPD+kxDSv+pnDwkOcr9z2WKurylQZiwfm/3Oy6hCxg9+XTd+ZKjh6vrNjY1RHI0na7J0b179u4nRxPJmrHvS1/5ueiYn6iNwLYnpnw5r6cfflbbXt9xUF23NFJWphrbT9cl39fWv6HS6VWtWLQ6wunhytHUIei6B5OjoeH7eNF1521iG3aGidFgCMEfEqsbF7o3hED3PdKFM/rwvXoLlGf1YdkegBBoIZNwPvb9N3Py73qFOmyzB8z3zQh8JpdXNVw/D2bYL96g7rr6XC8foO13TQRuW/iMshxlMKybmY0ZA5/Q7SRkQKGFDXAxYbXbkJVog4xw5gCLfT1cWHtRMEmLIsy77MlD8bW1jrqg3KI8U0+7M3KffPgGnJQJmHxemAUcdSBfxstnisF0TBusNrEK9f3vf386CIbHuJ7J2bXFG/9NvyEtmK7MeLgo/7bbbps+fw/BDDPhP+Hlna9XksjP7hKhC0honfRYeqxMR74fKjS0m3Q+mDsUBKFLRyhATjSM8h+mz/iaJl234x2jXEwqoQkmeGb4XOCDcP60K6SBuWKUeyiyrHJQPjQJJkMh7sk0WGC/KTiCLllhxc0fPJ511lnRb7ADRnF7BLOesIJB8rTLP9/UHdyysss4kxb8owBwj8tWWrtlsXJLFGXwQqApAt2Y5g8XoxaOX/nKV6L+5Tlt9WTfGL3lllumMXIgjIIt8se92nkcDka9n+mkwSj0Ua4o19QYRdatgBfWHivHP0aTquoLKzu0tCmjnS9u19tB1M0jlaPlUkkfyhS0fnhchZ6lEUZ3jYxqaCKvVCKuFd2d+spV5+vrP1sfGVTOXneBJtLN2j60U2eeeeYhyVEmsjyvl6PFvl0q5XPatmilFgdy1ONvOVpIp7R4aFSnjk3o6akAjPMiR6tSulLR2uFxPdbZGq3enpWIK6Vq5PJ8KBjl2V1jFT0wMq5cPKFipraPeQGjJ4+uG05iS4myWs/pVG77uAp7coclR49E12XFFCNebjynJx99Snt314KuWY6edt4pKlYLSiXTuuyyS/Tje+5V5oqsEi0pPfHcM2rNtUWGpnpdFzmaSNeMDtGEO5FUIf9uXXfFspW6/JLLozr27+s/LnTdAi7e56aVf21YbZO1fN9rXXdeg0eFgHfHzgR8E5oJK3zXYPF7oSXLxBm6KtgCVe9uYSC4Ps4vtOj43ZAQQkHm/P2OrTbuWFtDrHhzeUITdro73sqU98rxmzxI51UX++k7fLiDPdQTgu+F7hwGrAnO9Xc9TMSuE1doXTTjMVF5NdbM1/tZL7rookh5R7japx8rM+/xDKX5oYceitLDILzfgDIee+yxKF9HRn3uueeiPLxqQvmAnLrg8oiFyC6MrrNdsMwYXXf2+aJkUx+f7cV9199uG+FYhxagkE58L/xtN7D169dHDI9Jhq1KProkHAuPj5mTx8b7JOvLDid2pv1wnEx/phkzJzMQ/3cedhk50TDKhwlg6E57vGLUSnAoSKw0MJljdZJ8eJ8JJfcRUkQTDvvV4+lyZsIo40n0UGiJ8vkGV64juCEd9xHE4JPJJX3B90c+8pFpN6y77rprP4yCawQWyrJdlR09GazxH8x63xC4JC3l3nTTTREmWB0OFTKELuUY6/UY9Tl3bvNcMOpjh6i7+45jwijf40w9ELyMD2VjTXc7Q4yGcoA+816dQ8Uolw0NGB3q+fX7FaOjmbQS3EPZOIHkaFR+1JcxZRJxxcqxOcvRymRB5amVjpkxmtd1S1v0+mAlWs2OVmGSaf3+9++Nzk9c1dGiq84+VV3NDfvJUff9XOUoe9jLpaLWnrpaIxMT2rRpUyRHO9rb9Jn2mFZnm/XK0LDu3D6sxiUrtHPzZjWPjKrSVTuay+P5aLv0QkODOoKjd45UjhYyKU0k4trekI729TaMj+qn1YruKUkTS9uUZYWpb6+640XddMU6Pb91ULlS46xydCTTpNwUneSmPEUOB6MrYyVpbEI7i2WVGhre9xg9kXTdejka0lypWlI5XlFTKqPJQkFLrlyheCqh3L5xbfr6K++So/Ol68LPWam0HPWqZzbZqGQ2qc999vPKpLP7YXRCY9qV366e9GLdf/8D6tvbp8SOpJJnprR923YVNxQiw1Wo69I3a847Q9d8+Cp96y+/o+1v7zgkXTeKJzE+rKTiam5oOua6bpV80il1fmKlhr6/RSpUjwtdd96jIoeWA1cmtBqFlQwB5nfrgRqCOnSVCMFqaxYf7lsohcD1Oy7HnR2WZQEYTk7C/wZH2KEheNwOWxBC1wnXLfRx578VWfI2odiC5Xfqff8NWrez3tXCdbcAdppQcQ7fIz8rlwAOJZfntri578kPQsf1wVFXYQDuH/L48Ic/HAWUIUKjA1FceumlkTUaFyv278BMeI+y+A143X7KcGRkjyWTXDNSu5GgRFI3JsennHJKlA8RYLGeYe326pGVeUdlDcc0dHWwRcmR1lwX73/w/iUuFHvyc0RYByewQPF4hS4WfDtgQRicwdiwtdHl+7+ZkC1azssRaG2FsyIS4uBExWgogI9HjPINDbCy7Em4sUW7bJkGK9A2CqndZWwRrceoJ6Ccm2eDERbSEKNuF7/rMeqgDtwnDwQfZ+GCP8r0ebNcIUY98cZyDEZpFxgiPVGPmRjQBtoF5lC+SUu/gjvSIPjAoc+S84SV96jzTBjlGKB/9s/+WdTWb37zm1HdDoZR2ve7v/u70wLTGPfKq/cb88zn2DLxNX2HGCUtfIIgNkzsqcfhYJT7GAFuvPHGKJ+nnnpK3/nOd973GBXvTLm8nUhyVOmMduSKun/XkN7IVxVLvCNHQ8V4JoyyIqvhEY0TBbm15d1yNEF949FEfyaMDpfLuvfFNyK6mEmOug8PJkdvu+WHuvHKi9Xc2KC//v5t03K0UCzp0aGczljWrHXtWd21bzjiA9ds3qaWUkmvjk9oQ2/3OxgtlzXGnthUat7kKOfkPrq4o4YjtkE0NmtbOl0zMkxhtDkR06/feFX0zutbd2q4sveoytHmZFz/ct1qrX/oZW0anNBAw6Qeb2mI3nlfY/Q413UJtDTOVpbSqLrTNXdbYzC5NKPM4gZNbB1TMhVTcXdR6SUNiqVr9ct0NswqR7ONTFqlTEOTJvOTh6Trjk6Mqhqvqn1li5rOSOvlLesjHIRy1Fe9HI3GIlHVjv7tWrl8laplaetrW9W0ulmZ1ozy5dy7dN0I11dfFB0ZtnzVUvXt2ndIuu7b27ZoxznVaGtIzxuTWtLYdVR03W3btkXxABLxxLvkaH7rmJpO61C8M63McPy40HXnZWIbWp9C0JuQQkFhMDtd+F2/OmNCNbEbsC7HIKy3lBlooVXAdXQnhvV2pzqd8wtBH4LITMJ15rJ1yuW6LSGj8PtWzMI+C/vBirHDnft+yKBCC58tXGYg0QBOWdjcZwa2GaaJmAuFEQJGGfRqECDGugTwucdxIQYXCj2by8nj3HPP3Y8WUMY/+9nPTk9iUfZQsAEk+bGK9fDDD0f14H1WslAqUXQ93uTJqgv1p06OGGdLly2CfLOaRFu/+MUvRkzCEWHtGkkZKLvuL/djvbXToAknVG4P92gH/cI71JdJLeWaObq/PfFwWk/gbXFnRcn7O6x8+3gj06dphMtucQaw228rajimIXMPafZEw2gYfOBQMRpaqMOVufnEKBFIUTIZ4z//8z/fr6+ZSLFiSh18ZiOT34mplRUmguY/9Rj9xV/8xag+5Ela6ucD7MmLD4LRe3JCjIIXFGQuh/4nDyai0BnutijFM2GU97lH2t///d/Xr/zKr9RcrwqFCOtYrqF58gentIn7Ptweur7++uv1xBNPTAuieoxS9y9/+ctRXdgbRNuefPLJaJJMGp/RezCMMlYWmL4fYpRv6oUyELl4TfEAGxeMUcYXDN99993RJONwMerVcvgn/1lVx3XUPOf9itESmKyr94kgR7n+2+bhaC9stqFhv5XZ1slxjVekakPTrHL0EyM5vZxOaHNDdnrS5bpFK5zxFhWTNYVvJjnKKkhuFjn64+9+Xzd9+UsHlaO/8Iu/pL2bNkRn537kmiv0/XsemJajbwwM6OadNa+nntPWKL93n5oqZeFQeOnohNa35KLAVjNiNJfTl7/ylYjmj0SOsm+Zz2xyFK+Vv7nvcWWTCb3w5hZlsg1HVY7S3y/t6ld7S0bLi2Vd05LR+iI+0+n3N0aPQNclv2K8rFS5Nnk4GhjdpkHluqR4RWrZV1C6+o5L6WRfXqs+t0bxq+N67W9fVLwqTW4dV2E4r33rd6v3oqWKZeJSZX+MUo9/9W/+v2rvaMcpQ4P9g/of/+kvNNg/NCddd3CyX2d9cE2UTyqV1LLzFuuth7app7NHPb09+9FCPUbHB3JqbGqOJtO//Mu/HOm6pZ+WlHskp0whPS1HQ12XLUPf+qvv6vJrL+VIW1WqlTnrusjRIgb1nQWVszE1JLJzlqPxQ9R1zetmkqP5t0c18PdvqaO1XcrqPdd15zV4lAsJrVWendeIpLYywBWCPQS4weDBCEFqIVjPEGZiHL5Ci5MtULznzvb7tj6EFi0DOQR0uGcg3AthFwbXy+nrLWV+n/ShAu7VlnAfSGih8KC6Xj7byZZM1zFkPCa68HKdzYTdbojO58L6+BDyBDw8Z98NLn0IZVaDIHS+CTjhczJ90Y477rhDr7/+elQeghuguF4EqLj//vunz5U0Y6HtEDLfWLH57eA4tNN19Gbx6ADsKesS5/mxj5D8qT/v0EeAy1foyhFaSz0B8mq404a0Y8XXgtb5kD/pfM+RVj1WvGNapr4OuuO62Opk+vBY+iwxu2W7nqHLT4gdP7fbh++dqBi1JbAeo1w+V64eo7zLiicBgaAFJpNHC6OsTDIhQ8l0vqEXxX333Re5/hKECfd76kw+WD2ZPEZW5Wx2P4xGrnZTk8dQoHlPK5Ziyp8No7gvYsFlYg1eoC2O34GGwBd9Q7+AWYxUv/VbvxW9z33awWQcnIL1P/iDP9A//+f/fPrMOurFhI02G6O8C05xxWLV067Q4Qp1iFGCUiGIyZO05EHfUKaPWaD/fO6dxyHEKL/Zt0vbaRPWcoRnPUbBD/WgHNL6nMx6jJKfedORYPTFF1+MDAuMN++TjxXKkw6jTEjgj1PunsejHOXc2fLUuemWo525UX2xp1l/sS+nAn095SG1H0ZLJW1PxfV6Q1qxqX4I5Sh0tnm8pqzNJkeZwM4mR998+FE98KPbdcOnP3VAOQpW9+zerXseelBvbN6ioS1va7Rvr3pXrlJrR4e2Z5dM9wF12tCY1ZJSRblkQp+//ELtKxb1xMa33oXRn91zj7bcf7+qp58+qxxNQCfloorlygHlKKvWH+1ukGJVPZorvAujm0dqnlrxRPKYyNH/vmVAjdWKzo5V9bPxgkrtbdNK7vsVo4ej60aTjVMblF3eqdxL+6TBylHDaGc+q/78pHKZisYnc0rGa0bLqC+KMW386xe09lcv0ClfXKvNf79B2VhWm7++QfFqTDvHilKZfdv7Y5Q6/OCbt+jXfusfRPu92zvb9Xv//n/X+mdf0rf++rsH1XWX967UK3e+pkp7WWddvkbP3vuCxnfmVD6jpFXnrNivz8Hm8+uf1csbXta+PfsiQ9W+1wei43tCXTcRS2g0Nxq5ENfrusj7TDKre265N3rW0tyicqk8J103Og2hsUnpwZp3SKotFek9B9N1FZNypyWV68urLZ+dk67b2NyoxmzjrHK0raXtiOXofOm68zaxrbcUhRX05eV1E3q9lSXMJ8zDFQ8tQwa4mUK9+0fYASEAQ+HquoWdZ9cJW7L8Tugn7nqGitdMHetybGVw33hQ3D5bvyLXjKlAQ+6fUMGF6Pnmmetia6qtZy63nvmGbhhO676gPJRmVhkAhetGXaxkU08mthDrK6+8EhE3Ao+9glysXvEeSibKtJVrM7BHHnkk2ovnqGsee1uA7broNvisPSxcgAcFwK7QXsHyyg3MiXaQxq4bHifeDS31IcP3OIZjZSsQYKM8H1tCH3iy4NVjBxcIV6hoj112TDPO24zAl8feeYW0Rtt8PpjrR51QbGxlZCxMe7as876ZR/2+gxMdo77oa0cwDN+hr3AN4h6M/1Ax6v5y/Q+EUT733HPP9DhayTdGbblmUki+BKBAgH7yk5+cFvZ2RwoxyoQZvLDnHKEZ5kW7waf3JBmjWH/9n8k0dIY7LO+xD5bJH67CTGCJXv7Xf/3XkcKM+5T7lX5jvx8Y9WSXFVjqSD2Y0FK2FQDKgDeglHP0CGl47j2m9Ie3KBijtI8Ir9A1dXK7vb/VvIi8+ea+lXOPC3leffXV0T1cLDFiwG/qMerjf0jHpJvyjwVGWRUHo0w8TkaM+r1MLK7xwNhzvMvRyXxeH27N6MLWrP5rS0Y/GZjQzRPvnsSQfn1Tg+KJmlslrQjlKBO0O9JtGsyPqjHE6NtvKzs2rsLnPntAObp8zel67D/8qV5ev16NixcdUI6uXLVK3/1eX7SHd1QxnbJju/qbmqf7hityr69UtOTnvxRNhAcGB3Vab6c+tu4cvbq95nG0H0YzGe0aHVFu8+YZ5ShBwz5/+Tn62CXnamf/kP6Pv/uRYjNEzo3kdLmgf3h6TzS5eOzZ7ceFHJ2sVPRqa3sNoyepHD2YrqtUTG3X1yZwEy/tOwyMltTS1qLcRD7av34gjDYkM1pVaFQ5X1a89Z3VRGM01oYbqzSxd0yVybJS6aSa07XtOdpaUjaZnVGOvvz8K7rvrgf0gRuuUSab0QtPv6hbv/sj5XN5dXV2HVDXhT4/cM11kTfRD//k9mhFOJ1Nac2Vp2nnnu3RfWgwOn95xxZd/YErdd6F5+rP/+tf1I7qGq7q6iuvnW7zbLru6NhoNImFlpecsmg6wvlcdN3XN7+p7S1j6uxPqCXdGLWbdyljLrruZENFjRf1avLlAWV31GTsTLpudK8wqlKypMy6FqXeip8Quu68TmzrLUjhhMIVNgGGYA6FXL0VyeD0O/aNDy1cYR3ciW50mJcZUT34610ewzqEbm9c4eCF5ZsZWVDaWm+iqrc6OCS3LTK85/DwdpHwYPFtC5MnXnYTcDnc511bObzfbHowp1yU3f5wIsw7/k85bgvlUheICpdGrE0Qq/f92SqJewQBZxya3PsBAKHrxMoM+aDYAlws13ZBdKRVmAJ5W5kH6KQjX+/NIA+ARVAYu1uaOXu1KLQae8JjRhoKGtLbEhkKjPC++5W2++w/jxHKP0ozCordbULrKnkakO5XnnmVwzRmOnTZtvyG+wpIz6oaEx7aRdvpRyxjHgtb9DxpqsfjiY5Rfzt4Uj1G6RdWBGGqVpqM6wNh1P0A7VF36JbnMNvwwPbZMMp98BxilP+4uBpTTDAZP94nTyY+GIFC3sB9XJrIwxN3lxO6doGbEKM8x70ZWmOl2GfLeY8r+bOyymSScyo9WfRRPNDMgTBKG7wCi3sieYJZu1NRR7tAh3uqsF6HGKXOvEcwDib4BJaygKLPqFdotXV7w71e5IPLF+WS1mfl8pz6MHb+T36sYrPShTKC8nw0Mcp9DHy0l7JPRowab8WGtBJT+DuacjTC6NQ4HYkcjbA3PqEzmjLaWyipO5VUTOV3ydE0htmGhiholusdylF6PTExrrapFUhjNBWP6QMjA3rx69/UT85eq0Rnx8xydMVevRmvaNmtt2v4ikvmLEejdt+/TXrqOVUvPH8/A1soR3P5vPqGR7Rh85YoeNZMcrTS06v8FI7q5Wgs2hMn5QtFNWbSam7IKF+qTO+jC+VoORbX0/vGauM2JW/rMXqs5SjurBcSPKqrS5kp/nSyYnQ2XXd8ckKTO0ZVScVVniypWq5Ek4G5yFH+/6N/9Ws69czV+r9+4/ej/3PVdWeSo+WBsl79s+dULVXUlGmaxjn5nn7OGTr3rLP1o1tv19joWLT308/J+yc/uk8P3E1gp2Q0yfbEaC66Lp/oCLuG2pnSH/vqh9XS2qS29hY98NP7NLi9dvrAvv59yjZkIhfldDozJ10XmoulYjrrk2dqbPeoLll+gbq6u/Tiz17Vnn17NVmsGZRm03Wp83CsoPGmqgrJotqH3qHTueq6sWJVxa1jSrSmNf7mhLLpzKy6bkM6q64PLlPz8jbtfvMt9WS7j3tdd14ntr5CIRRapULrFFe4QTl02zJ4/N9MInzHHzfMwqn+fQM/VAzNKMJVmXpGEa5yWrAZBCEzMVDDoBOuk//bomSG4sH1fQdJssutw457JYMrtMbZshnWLWSkLjO00iFE2YMDcXsSGr5LOyiXdCiLfMLN21HktYGBqJ5YUsifCazHznv/aIPP3OJd8gEo5MsKEe56MBBWeSBewOBoqrTXSjb9w28mBD7WBEXZbpEo7nZr8ZEHvMd/Pj5Dy+13utCKxvtmZmakpiUzATNk3qN+dk2LLOYrV04/Y0KFAu0jakyL4YqbIwNymbl6XEMF3oYPt4f/jhpoi5oZMek8EaMclxsK0fcLRs0MZ8Mo9znLlIBEv/Zrv6a/+Zu/mQ4kdCCMGk+h275XB533oWLUEz6/D83ikkS9OdOVVcavfvWr0Td77eaKUT54V4QYRZCwYspxOqy6oiAyqQavPlPXq9jgjvNaScczC7CDYRR3Y1woWSHluZUSjihh35/dpv7oj/5oevLuPjH2wCxnc7K/nrLDyKchjfs4JLfXY2baoB9NN36PsvlQD69q88EyD3/h/cPFaHj0y2wYpV7UAwUGl1L2Vp20GK0zoh5NOZoaG6tFZW5rO2I5ujWR1b8fKCuZrdFyIhU/ZDnKOZbQTUsdRjONzXq1oUHn7BtW72NP6qFz16pz+fIZ5Wh86SL1TbZrcWfn9NFbc5GjD+3erfyWbUqOjWpoKDurHH3h7T366fo39tsCMZscteEoxOiPntuoxzdu0sjEpD5++TrddNn52rBlp/7oe3dP4yZSUhMp/ZetNcNadqpPm0p5fbK5QXf3jSmfbjimcrSG0YzaRsd12gsv67GL16kw5Qp5MmH0YLpuOp5S7v5dSn9hpZo+sUpjd7ytzOTcMPobv/vrWnX6yigCuNt0JLoun9Z0i2KZ/XXds9atVcuVy3TpOZfo0cpGjT7/hqobJmbFqI+Rmauu29CS1a/+1q/U+qRS1HBhMNr7yv/LPnSxvvWfv6/Ots5Ipv34/vtUyVc0mctH/P9gui4Bs5ZfuERNnQ1RZPMHbv+pln7oDH1/34PKJQoqthd1ZWFpbW/4DLou/08vZtSxs1+5eEm5yfy0cW+uum5LvFGlp2qru3hc0FcH0nUvKK/Vjmd2Rivwh4vRyQIGxli0leFo67rzNrE1aGmEFYGZnvuqB1doufQsfjoS4VQ0LXecAetlaVuNQtCGloTQouS8XfZMQhPCoTND9xIr1WYm4QZ/t9nMJ1TE7AZl1yfXJ7SYhQq7GYfbHCrf3ithJdLttnsxAPb7oQWPMqkDqy4Wdna1hXjc96FFy0E3vMcP4vbeAIgapZlJA2kBAXnYvYP8sVJxHwtVtN+mUokmpp78Wqll9eaFF16YBgLAs0WXfFhpQgnmPdoN44jOzZrqT76tvDNupKFNdnfwOPB+SCdhX9tVxPtQDGiPiy3XZohRWPeJiWifFGnc7zBRT5ANPq8ImNFwzxbJUFF2HUILL5f3VDqSngN4WNmxoAjp3vRsgXcyYZS+NU4sIMM2hxZtKw62cIYR+ownj/18YJS8mBgSwAl8gQ27DM8Fo+FevnqMImwcpRkhysosE0CUZvCBsOWCdljBIU8mqtQBzJq3HQijWLHtFuQIkfABjh5hsh5O7uyu7dWyEKO0C4yTLxP7EKNc5Ete5hvk4z12njDPhFHeYx8wyoAD97CXOJzIHCpGeedTn/pUVE+Cac2G0Uhpb2qKjAakM20vYPToytHilLs7vXhcyNFkKjpKaCaMvtbYpCtbciqPFLRy34Dip56mWFvbu+Tost17NFooaGzlikOWo4Wp+hxMjiLDjdECdF+HUdJEZ2cODGmsqwNvzP0wunu0FhTvsVff1HXrztJdT74wrUAfSI6uas7qQ8s69Op4Sa8VKsdUjhZZsR8Z1VOplN5cvFgJ5MGUm/UCRvfHaCybkEoVxTgOq/LuNkcT4nhMLYuaNbB9cBqzTz70tE45Y5Xy+ZqOxirqfOu65PfM3tc0+Ozr2j60W12tzdq3R5qYJ10XXDU0ZaNzZbPprMqldLRP/IXnX4zal0wl1dHWEcmZvsSg2j/Wq/zmcTVsfGev6sF03T3P7tNo/5i2vbxdqUpa23+8T6tXdOuF0c1RpHKug+m6tIs2TcQnDlnXTR9Ajs6k61qOJsuJw8LoZLmg2Ie7Vdw2rvRb5aOu6877cT8mUi53mK1CrkhojXF6V7AerFZOQyXVlqLQTcNlhha08LcFZSio3Elh/aiDGb7zDN06TBC+/I5da9wGl+X2+AwoK0uhgm3G5rJcftge/7Y7h/cZUiYEYKXSBzW7v9xG7uOKCKEBSLfNbgoowJ7A2qLmvuIdPqThHkSNoCSdj/5gxcgbznGzZBWHfYUow9/+9rej9LhaAUbvz3PENNwFUcxJAwEbGLgiUAZCnX4DOFh32ZCPOyL7+3yciPsmDCwUttOMzGca+h7pqD/1sftGSCshXXrPH8+8cZ9+pQ9YpcYqHtIH5ZtBm4FYiPjb427aMn2EVlrTDu1iX4eZt88TM3MxLdrlL3ShOxkwamsr+9Bou11jQox6Lzn/PQFxfe26G+4DdDvczxaMh4NR8ie4EOPJ5JbIx+EWgYNh1MzdQivEKL+hP3tVeIx4zuoswWlYLSVvcAkdgUUUXPqJ4EfQc4hR8AhGKRNFgf88s6utcfTqq69GyillwSMQ6uwj9H5T6uVJuTHKu7/6q78auQjfeuut+yk8YRnUjf+UfzCMGnM+l3C+MAo/o96shB8Io5TryNULGD12cjSqe7GkciatOKt3uMIVSyo0NR5zOTo8MiwCtQ4nUu/CqJYt14ZqSc91pZU67Qxl4zENTkUbNX2+9MILWjye0+6eTp25dOmc5Sh7hFc3ZzTaN6zd8axG8/mDytFzzj5bAxte0MdPX64/fWKjJuswOj40rOuHxrR5dEyvLV8yI0YHJgr6sx/cpTf6RyLeejCM5ipF7ZvIa5S9v8oeWzna0qI8dMnEsVRUZSo2wQJG98dooVpUQyml3IuDUqmqbCHJCVb7YfSsG87UmitO12SuoHv/4n5NDtdw9vIzr2rLDdt089/eqkqZ8OKad12XPHalxjU5Ij204QWdl+tWbqC2PWk+dF3yuPKGy6OVWlyxKyXpxade0hsvv6ULzr0w0nW7u7r19pa31Xp5l5rbWtRzZa8Ka/MavnP3rHK0XtfduXGnqnlpsjqpxaVFqm6uatnOmNjQMJEa09JFi983um4+VlC6t0ccJV16Y+CY6LrzumJr8LojDdrwE4KZy8ERbJnyQBiUBnsIzDAtl/+HAPbl/+F+1NASbLB6RcCAsgXJwpY8qKuV33DFx3X0FVqF3C8hQzGgzKxcB4Pc/eh8QyYaLetPWW957qAydlEBTAgxv0Oe1Jk+pgy7ZZjoeM/7IKiHLVyul/c9+Kw8yqB9KLBmuDzHVYp3on0a4+MRsRPBFIWQ1SMswNxjZckXq0ekRQFGAHscqJcPrqf+lGvmj5uHrWA+g8yuJD5zCyD6nvvAbaB9dvty9DZbAr1pnnIit5wp8LIa42it5Mk7rBChcDPh4Jv/Dp7j/AxU01q43yCkxVAIWiHit5VlMyqD3h9b8sKxpK3O72TCKJNFJlMIAUfTrseox4SPBZ3rGEaPNEYdop7P5z//ed1yyy3TDPlQMYow+8u//MtoYs1kE7y4/LlglG/2oyFUmJCGGOViVRFMUlcmqrQPwcgeHYQZgaUQbOSFcLIwgm65T6Aa3kHwcp8+BINM7CgHocZeF/bDUQfXh3p4NRca5b8jFbOCSp7gDAwZo7QTgc2eYNNaPUZ5nxUrlJS5YJT7KB2m8/nCKBftCJXUBYweP3I0opXJQhSN+eJ9g3phSUoV+jmdOuZylGM+fuXUNn0Tw++i5ftjNJ3Wcz1LFG9r1xhRs6eUQMvR/h07dOVz69U2WdAF4+Pac27/tBzt7ujQssa0dg0PaiyRepccBeNXDL2ltY1J/XUprcZlyw4qR3fu2qVl8Yq6Rkf0D9cs0X/fMrYfRouVsvZUK3pjKhLzjBitVNTTv1cbS7E5YXRXqkX/x6v7FIslFYsvyNHjDaPldFWLbjhF/T/Zps7+qS1dM8jRdENKDa0N0SeKSpx6Z7/uX/zhX79rJX0+dV3k6Oq30hpNFlRur0bGIaIpz5euW9MP6LeyqrjKFib1ynMbIpkZ6rrpVFp6NR5FT87kE1qdOEXJy0+JAsGh62LkGhoZ1KIli/Tmi29Gsqxe162XoxgC3pe6bowfMaV6G5VTn5Lg/yhidF732IZAC5eHQ4uSQRgyoHCJOXS7qBdmIbCdrwHhvEOrWQj0EOD11iwrs+5gg8F1DV03POBO648tcWF/eKkeQoH4yMcMxO0mXy/7h4zZfRD2n9tmK4372Ks0KKcooeRF/QCf+8L1I0+Eost1/0BIZoahddrvQ0ictwVBs2ILIAEaE1MYDaAnsIwtwgCAcsjT0VFJ47MeyY9+gQGQHhdNW2RQnH3cj90qTMAozHZvoP3k4WA9jtxo9xJbcg0A6sNFvakL/YhSQTq7Udg9gvr6OBaHpyc979K/pAfYXqVmfNlLgZWJ8TBNh8KLvg/3lTiinPuDsvycsvw83E9QT9shMzGDCunlZMAon/PPPz8SFsaHx74eo77oWwcqCDHq/R5+x9H6ePd73/vetHvQjO5bB8Eo7eF9JoheNTkUjEJrTDptaa7HKAIHIcSRP5RPWUyioUvuMemnXO5BxwhYgh2BZ/YDwTv47WjJHmswx8TO+JgJo9TDK+S0CYFKG8A17WV/r93B6BMw/LWvfW1awM6EUfKgfmAVXFkhnAmj1Ml97r3RjBETE5+NeTgYpT4EuWLCY7pewOjxJUejYHJRmqSe7u1S4/iE6O0SfCAI7nQs5Gi2uUnf3ZPTWFO72mfAaGNn16xydOODD+nVqy/X2Fub1T48qsqWrdNydHjHVv1SS14fOrNDf7R5PAoCFcrRfTt3qCE9qXIlrlVj+7ShtetdGM2NjWlkYECppqZpjL41MqzLxvdFq1Ltq87YD6ONzc16bmXNMJWZRY52lwr6fKKi7qr0CCuic8AoZ3W2NDcpztgODmpwx3Y1dNUC0izI0fdWjrZfs0TNp7arT1sOLEen5tJjA+MaH5pQvBI/oBydT13XcjSbKeiMjpUazA7Mq64LvT5x/zP6yOduiAxVj977eFQesqxe113atFSL99ZWVlevWh3FVojoLJPWP/ynv6y29lbt3rVH3/zL75zUum41V9XEAzuVGq4qHUsddYzOqytyvTuGKzCTsAqv0OpkwNt6U88onI/zNCHXM5H6d0OXIi4vw4fWNZ57ZcTMy+3xf7/rcsJvPzMITTQ8C/cZcNlCYkDXW9/CPgrrHU40TQj2meeZ/dOx4PIfwId+9AZJaE3j4xDfJkpWZryn1qtb/Ocwasr2PjtWauw+zHsGGfcheFaBWLFFibZlyUzE0c34RmE3sXtvBatO4fmTXNQF0IarTg48YAsPF0Lb9zwp8BEQZrS0yStfKMAoGqaXkPHaVYd8YA6OaIuy670L1Js20C8eXzMMW1Cpq+tjd1fTm2nAFkvqZ4uXx4n2mrG7r5xfGAXY17QL3EmAUVZpfei6LZwzYRS6ZmwYb2PmYBi1Qs4H4QRTh77D/porRrl89MyhYhQsuD4zYZQPE8HrrrsuWhGGTh3lEYyCP2jQAWEom70z/EdQe28qAtQCBGxhaSaaKSvCtrSHGIUOoU3KY3XVZ9vRDt7xMQRWUIxRR26eDaO8h5szv8EpeJsJo3yYrNOPXGAUt0gH9uG+FapDxagD6ISrJgsYPf7kaDU4o3EiEVfXeE79DVlVjrkcbVBnbFLjqhy6HL34otqkAJmTTkfKtOXo5Oiwnt06EB1XUlXsXXI009ysP+uvqmVwVEOZJrUyga3DqLZsVed4TqmunIpd3TU5OjSsn5RjGiuXNToyEs1XQoy2trUdEKPDiuneclyFlpYDYjSi3x27NN7SpGRDQw2jHR1Kv/CcyrkJrZ+YUHIqoNCCHH3vMDr62oAm+yYUb0lJY7Nj9MUfv6yJkZxef/JNJaoJVXVsdV2uZemu6Kzk+dZ1+axYslITeybV2tymf/jVX9tPjoa6LvTXv69fL7/0snZs3zGt646MDuvxR55QqVSOzr6Ox2Mnta6bIeryREWTlUlVCU1+DOTovK7Ymjj9oUL1G+xJR2PDTpyJAYRXOCMPLTpcIQMILVlusF07bK0KrWShFcpWApdvMFlg+p792d3p9fmRLrTCGWAhIXFZQYQwTDB2DzEzcrtcNyvZzivc78a3+zYMuR32m4nPrijka4uJj0khnY8iCK1ZrOoQwZWonyiS/uBSCHNw2TAY8kMZZlWKCQeARFDbckd+PiLE7TGdQNR2W2YVyv3jfnA67tvyz7ePGQkFhi9bjMMgHWbs0R6AqXpx3yAz8EJrKQyQ+tmKZabrSK7O21F2XS8H3eDyipJpwrTpQAH+774xkMNz0GxdM134Y5oJlcT3O0bt6orQORhGvV/ECsHhYJQVTfOEY4lRvqEd08lMGAWLuBwTQAo65arHKHmCvRCjDkrByizvWTDacmw3Ut5BKNZjlPK9t9URj7l8PNDhYJS+ZkWLOh0Io1y0w/t46SPvo6Z8Y2EBoyePHB3s6lD5PZCjTKT7upYqfgCMzkWOzoTRnalOjU2OacmK1mlM1svRgUxT1B/5GTA6uWzpNEYb46koaJRaW/V6W1uN9qfqeKgYfbS5o4bRXG5WjEYKdk+XMiFGe3u167x1kVEyNrXSuoDR91aOlncWVd5TUaoaOyhG33r8bZUn959Ev190XbCIDF22dNmscvRAum5nR5c2rn99Pzk6Pl7bB7yg66aOOkbnbWIbAj20CNWvangg7Obg534WAmQmS+9MoAzLr79nYWqlJ8w77NTQN9x18nK68yON8wktZLYCub6U570LYbS1+kh6tj6EgVVcB/ehAWfLh+sWWgxtEbMbEP8RfPUb53nmyHLOl8t1Dzdhm8gdbhzChsiJ+gnRcUaXI7vikgCx2+WY9B5/uzRg8QldYgwSvmFM///2zibFbSAKg95l61v4Mr6uTxaYTTahzFT4ECEk4MUoroJhZqTuVv99z9bT69b1en16lHjCQ2iGfX38QKA++0UJr5ICcW2C4+GudHp6/DHUwjUO1E8sa+eThsg28WWZmygXtHs90+pB4wvH6kBDdXwX63o6FbNfWhwn+3INmTcP+8GyOtw2pNE0mkbTaBpNo2k0jabRNPrjP9boS0ORnfxWeoXvBLVCTjQxnQPisd95cC3r2Jg1JtbBNOtF0jtlaADpLZffikGPj544y1PEpiUNA2yYgB6SfVyukXKgFLITScFrYBTfCsRwDkWw9TEuX4+Zawi37/Sy2P6NV0cYPFF1jcoaWNfQAaLEkPDUBi8VYseDZR8bnqAXhwmvQPHMYijw7vrSacqhLnjN8IhhOHy3psZmxWeYKcfwjlFX1ixwHcdNA+4Tph0Lw1k8z/+uI/CDwbllPxieRrkYI8fPsVSIzjlFqdFX5Bod6kqZGEfXr1gWbfBdY8cPUA2xT8805qu7X+L9nBNpNI2m0TSaRtNoGk2jaTSNfryJRl92Y7sV8/dOdlkxrydr0+8kh2NYgufWY+bf20mmW6HrDdOzo8dEcWzerZtiNHRCb4jGgLyGSqxh4jiD6uN+6+3EslzDRzy3XgzSuDmLIj8aEx/bm8f2aVRgww0MDdnxWU+dbbcuxNUjLM4hWkIy8Tjxv94+8vrCa/5GzAjfnR8RNSEenCeMA48QQqNs4/7Jp+F0XZLG2gX0hiowBm6oQx6NriJTmI65G1pxjDTUzWMaWcbPDQ5c48B5Q0X2/YB6AH2/J+XiFdsPHPtwx8UNidaTZYiIa0is4+rBMVY7G86xXtudG2k0jabRNJpG02gaTaNpNI1+exONvmSNrdjJHrOzrcCKz8ltnhW/eW3YlmeezWuH6M15NuJTxNuB5Nk7fL0Ndu4aDgXjj9ejLRogH9FzzolD569Ha+ulV0NPxfaBu4RtCMV6NI7hIxz3nXvbp04MPTBe03R6czQStAGvEMdJRx63Bvc9YtSLtUGEU+C5Ir1lMsERA5MeIVIeu9QScgGIlHJYjE6Z5Gctnn2ql8cJ7G60nCcv1yD/7Xa73O/3y+PxeL4Dkz5wcxoNAj+u47DfFa1zwOu6XTrQLttDue4ep9cS6BPH3vGwrxS4/aZny3GwPh6nrXojXRy/4SEafeeQ9XderQFxrq53Mo2m0TSaRtNoGk2jaTSNptHvb6LRP/F889A/54qIiIiIiIj4Ivz9atyIiIiIiIiIL0g3thEREREREXFqurGNiIiIiIiIU9ONbURERERERJyabmwjIiIiIiLi1HRjGxEREREREaemG9uIiIiIiIg4Nd3YRkRERERExKnpxjYiIiIiIiIuZ+YnTL267BG6lQ8AAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "ops0 = lsp.load_ops(ops_files[-1])\n", "lsp.plot_segmentation(ops0, './test_seg_overlay.png')" ] }, { "cell_type": "code", "execution_count": 23, "id": "ad3cc7ad-00be-477f-8add-cd365c2e141f", "metadata": { "execution": { "iopub.execute_input": "2025-02-27T23:43:59.829870Z", "iopub.status.busy": "2025-02-27T23:43:59.829870Z", "iopub.status.idle": "2025-02-27T23:43:59.937911Z", "shell.execute_reply": "2025-02-27T23:43:59.937911Z", "shell.execute_reply.started": "2025-02-27T23:43:59.829870Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "dict_keys(['ypix', 'xpix', 'lam', 'med', 'footprint', 'mrs', 'mrs0', 'compact', 'solidity', 'npix', 'npix_soma', 'soma_crop', 'overlap', 'radius', 'aspect_ratio', 'npix_norm_no_crop', 'npix_norm', 'skew', 'std', 'neuropil_mask'])\n" ] } ], "source": [ "output_ops = ops0\n", "stats_file = Path(output_ops['save_path']).joinpath('stat.npy')\n", "iscell = np.load(Path(output_ops['save_path']).joinpath('iscell.npy'), allow_pickle=True)[:, 0].astype(int)\n", "stats = np.load(stats_file, allow_pickle=True)\n", "print(stats[0].keys())" ] }, { "cell_type": "code", "execution_count": 8, "id": "929ccb2f-d622-4c0f-a048-ec520e966167", "metadata": { "execution": { "iopub.execute_input": "2025-02-27T21:58:46.087451Z", "iopub.status.busy": "2025-02-27T21:58:46.087451Z", "iopub.status.idle": "2025-02-27T21:58:46.268242Z", "shell.execute_reply": "2025-02-27T21:58:46.267210Z", "shell.execute_reply.started": "2025-02-27T21:58:46.087451Z" }, "scrolled": true }, "outputs": [ { "data": { "text/plain": [ "{'suite2p_version': '0.14.4',\n", " 'look_one_level_down': False,\n", " 'fast_disk': 'D:\\\\W2_DATA\\\\kbarber\\\\2025-02-27\\\\mk301\\\\results',\n", " 'delete_bin': False,\n", " 'mesoscan': False,\n", " 'bruker': False,\n", " 'bruker_bidirectional': False,\n", " 'h5py': [],\n", " 'h5py_key': 'data',\n", " 'nwb_file': '',\n", " 'nwb_driver': '',\n", " 'nwb_series': '',\n", " 'save_path0': 'D:\\\\W2_DATA\\\\kbarber\\\\2025-02-27\\\\mk301\\\\results',\n", " 'save_folder': 'plane_01',\n", " 'subfolders': [],\n", " 'move_bin': False,\n", " 'nplanes': 1,\n", " 'nchannels': 1,\n", " 'functional_chan': 1,\n", " 'tau': 1.5,\n", " 'fs': 17.06863078416647,\n", " 'force_sktiff': False,\n", " 'frames_include': -1,\n", " 'multiplane_parallel': False,\n", " 'ignore_flyback': [],\n", " 'preclassify': 0.0,\n", " 'save_mat': False,\n", " 'save_NWB': False,\n", " 'combined': True,\n", " 'aspect': np.float64(1.0),\n", " 'do_bidiphase': 0,\n", " 'bidiphase': 0,\n", " 'bidi_corrected': False,\n", " 'do_registration': True,\n", " 'two_step_registration': False,\n", " 'keep_movie_raw': False,\n", " 'nimg_init': 300,\n", " 'batch_size': 500,\n", " 'maxregshift': 0.1,\n", " 'align_by_chan': 1,\n", " 'reg_tif': False,\n", " 'reg_tif_chan2': False,\n", " 'subpixel': 10,\n", " 'smooth_sigma_time': 0,\n", " 'smooth_sigma': 1.15,\n", " 'th_badframes': 1.0,\n", " 'norm_frames': True,\n", " 'force_refImg': False,\n", " 'pad_fft': False,\n", " 'nonrigid': True,\n", " 'block_size': [128, 128],\n", " 'snr_thresh': 1.2,\n", " 'maxregshiftNR': 5,\n", " '1Preg': False,\n", " 'spatial_hp_reg': 42,\n", " 'pre_smooth': 0,\n", " 'spatial_taper': 40,\n", " 'roidetect': True,\n", " 'spikedetect': True,\n", " 'sparse_mode': True,\n", " 'spatial_scale': 0,\n", " 'connected': True,\n", " 'nbinned': 5000,\n", " 'max_iterations': 20,\n", " 'threshold_scaling': 1.0,\n", " 'max_overlap': 0.75,\n", " 'high_pass': 100,\n", " 'spatial_hp_detect': 25,\n", " 'denoise': False,\n", " 'anatomical_only': 0,\n", " 'diameter': 0,\n", " 'cellprob_threshold': 0.0,\n", " 'flow_threshold': 1.5,\n", " 'spatial_hp_cp': 0,\n", " 'pretrained_model': 'cyto',\n", " 'soma_crop': True,\n", " 'neuropil_extract': True,\n", " 'inner_neuropil_radius': 2,\n", " 'min_neuropil_pixels': 350,\n", " 'lam_percentile': 50.0,\n", " 'allow_overlap': False,\n", " 'use_builtin_classifier': False,\n", " 'classifier_path': '',\n", " 'chan2_thres': 0.65,\n", " 'baseline': 'maximin',\n", " 'win_baseline': 60.0,\n", " 'sig_baseline': 10.0,\n", " 'prctile_baseline': 8.0,\n", " 'neucoeff': 0.7,\n", " 'dx': 2.0,\n", " 'dy': 2.0,\n", " 'tiff_list': ['plane_01.tiff'],\n", " 'data_path': ['D:\\\\W2_DATA\\\\kbarber\\\\2025-02-27\\\\mk301\\\\assembled'],\n", " 'input_format': 'tif',\n", " 'save_path': 'D:\\\\W2_DATA\\\\kbarber\\\\2025-02-27\\\\mk301\\\\results\\\\plane_01\\\\plane0',\n", " 'ops_path': 'D:\\\\W2_DATA\\\\kbarber\\\\2025-02-27\\\\mk301\\\\results\\\\plane_01\\\\plane0\\\\ops.npy',\n", " 'reg_file': 'D:\\\\W2_DATA\\\\kbarber\\\\2025-02-27\\\\mk301\\\\results\\\\suite2p\\\\plane0\\\\data.bin',\n", " 'first_tiffs': array([ True]),\n", " 'frames_per_folder': array([57868], dtype=int32),\n", " 'filelist': ['D:\\\\W2_DATA\\\\kbarber\\\\2025-02-27\\\\mk301\\\\assembled\\\\plane_01.tiff'],\n", " 'nframes': 57868,\n", " 'frames_per_file': array([57868]),\n", " 'meanImg': array([[293.30328, 232.32823, 168.23618, ..., 521.57465, 464.1154 ,\n", " 394.5214 ],\n", " [284.06448, 226.78777, 163.6352 , ..., 501.11826, 446.7953 ,\n", " 381.61337],\n", " [266.5393 , 214.82086, 156.06839, ..., 466.04904, 416.06656,\n", " 357.26947],\n", " ...,\n", " [301.4731 , 261.12186, 224.88362, ..., 577.2157 , 512.18005,\n", " 418.6066 ],\n", " [303.3301 , 262.12506, 224.97882, ..., 576.16766, 515.00006,\n", " 427.4448 ],\n", " [301.86884, 258.6367 , 218.3702 , ..., 563.2787 , 504.22775,\n", " 419.83896]], dtype=float32),\n", " 'Ly': 448,\n", " 'Lx': 448,\n", " 'yrange': [7, 441],\n", " 'xrange': [8, 440],\n", " 'date_proc': datetime.datetime(2025, 2, 27, 14, 26, 26, 751811, tzinfo=datetime.timezone(datetime.timedelta(days=-1, seconds=68400), 'Eastern Standard Time')),\n", " 'refImg': array([[ 62, 20, 10, ..., 531, 480, 259],\n", " [ 54, 26, 7, ..., 451, 387, 221],\n", " [ 85, 31, 6, ..., 431, 393, 241],\n", " ...,\n", " [135, 62, 57, ..., 574, 524, 251],\n", " [153, 63, 47, ..., 565, 507, 304],\n", " [ 82, 41, 39, ..., 484, 434, 254]], dtype=int16),\n", " 'rmin': np.int16(12),\n", " 'rmax': np.int16(2860),\n", " 'yoff': array([-1, -1, -2, ..., -4, -4, -4], dtype=int32),\n", " 'xoff': array([ 0, -1, -1, ..., -4, -5, -5], dtype=int32),\n", " 'corrXY': array([0.02158369, 0.018543 , 0.01747612, ..., 0.01333473, 0.01218268,\n", " 0.0138828 ], dtype=float32),\n", " 'yoff1': array([[-0.1 , 0.1 , 0.3 , ..., 0. ,\n", " -0.4 , -0.4 ],\n", " [ 0. , 0.3 , 0.1 , ..., -0.7 ,\n", " -1. , -1.4 ],\n", " [-0.5 , -0.1 , 0.39999998, ..., -0.4 ,\n", " -0.3 , -0.8 ],\n", " ...,\n", " [-1.3 , -0.1 , -0.3 , ..., 0.8 ,\n", " 0.4 , 0.2 ],\n", " [ 0.1 , -0.6 , -1. , ..., 2.5 ,\n", " 0.7 , 0.5 ],\n", " [-0.3 , 0.7 , -0.2 , ..., 0.3 ,\n", " 0.7 , 0.5 ]], dtype=float32),\n", " 'xoff1': array([[-0.7, -0.6, -0.4, ..., -0.2, -0.4, -0.3],\n", " [-0.4, 0.2, 0.9, ..., 0.1, 0.3, 0.7],\n", " [-0.9, -1.2, -0.3, ..., -0.3, 0. , 0. ],\n", " ...,\n", " [-1.5, -0.7, -0.8, ..., -0.5, 0.3, 0.4],\n", " [ 0.1, -0.6, -0.5, ..., 0.1, 0.9, 1.2],\n", " [-0.7, -0.5, -0.7, ..., -0.3, 0.6, 0.7]], dtype=float32),\n", " 'corrXY1': array([[0.01925137, 0.01940679, 0.01934982, ..., 0.01214676, 0.02207752,\n", " 0.01830108],\n", " [0.01296142, 0.01474211, 0.01633533, ..., 0.01063509, 0.02069657,\n", " 0.014935 ],\n", " [0.01563133, 0.01439206, 0.01608265, ..., 0.01040511, 0.02162057,\n", " 0.01748876],\n", " ...,\n", " [0.0122851 , 0.01224983, 0.01089673, ..., 0.0104221 , 0.02398453,\n", " 0.02038603],\n", " [0.01228525, 0.01254859, 0.0088719 , ..., 0.00895512, 0.02062548,\n", " 0.02032768],\n", " [0.01201922, 0.01257571, 0.01276607, ..., 0.01179439, 0.02362394,\n", " 0.02025481]], dtype=float32),\n", " 'badframes': array([False, False, False, ..., False, False, False]),\n", " 'spatscale_pix': array([6]),\n", " 'meanImgE': array([[1., 1., 1., ..., 1., 1., 1.],\n", " [1., 1., 1., ..., 1., 1., 1.],\n", " [1., 1., 1., ..., 1., 1., 1.],\n", " ...,\n", " [1., 1., 1., ..., 1., 1., 1.],\n", " [1., 1., 1., ..., 1., 1., 1.],\n", " [1., 1., 1., ..., 1., 1., 1.]], dtype=float32),\n", " 'tPC': array([[ 3.76147106e-02, -2.67174281e-02, 8.22716802e-02, ...,\n", " -2.24205386e-02, 3.34519483e-02, 4.16396651e-03],\n", " [ 3.28002535e-02, 1.18480464e-02, 1.10959694e-01, ...,\n", " -8.69029853e-03, 7.48462230e-03, 1.68417562e-02],\n", " [ 1.63297374e-02, 2.94245910e-02, 4.69198748e-02, ...,\n", " -8.59191827e-03, 3.71028646e-03, -6.98513864e-03],\n", " ...,\n", " [-2.81411707e-02, 4.38331394e-03, 1.66360959e-02, ...,\n", " -1.17876763e-02, 1.84267499e-02, -8.43129121e-04],\n", " [-2.66001578e-02, 2.46010404e-02, 3.82185169e-03, ...,\n", " -5.33293420e-03, 1.46578357e-03, 4.28768992e-03],\n", " [-2.58081928e-02, 2.10867506e-02, -1.27776908e-02, ...,\n", " -5.53919189e-03, 1.05655589e-03, -9.19369049e-05]], dtype=float32),\n", " 'regPC': array([[[[ 13.526667 , 13.743333 , 8.82 , ..., 374.53333 ,\n", " 397.67 , 389.74667 ],\n", " [ 9.1866665, 7.4 , 4.1233335, ..., 407.82666 ,\n", " 413.99667 , 412.65668 ],\n", " [ 6.443333 , 7.63 , 8.156667 , ..., 413.60666 ,\n", " 426.74 , 411.58 ],\n", " ...,\n", " [ 91.543335 , 93.53 , 108.456665 , ..., 502.34668 ,\n", " 512.8233 , 519.4733 ],\n", " [ 98.083336 , 101.58667 , 109.14667 , ..., 518.88336 ,\n", " 510.21667 , 520.8233 ],\n", " [ 92.083336 , 95.73333 , 100.776665 , ..., 513.06 ,\n", " 537.73334 , 544.78 ]],\n", " \n", " [[ 8.333333 , 5.5466666, 7.84 , ..., 468.00665 ,\n", " 456.39334 , 491.16 ],\n", " [ 9.163333 , 6.863333 , 10.053333 , ..., 505.45334 ,\n", " 508.48334 , 502.25665 ],\n", " [ 12.326667 , 10.823334 , 11.483334 , ..., 531.93665 ,\n", " 541.51 , 509.52335 ],\n", " ...,\n", " [100.276665 , 104.46 , 107.89 , ..., 579.37 ,\n", " 604.94336 , 609.2267 ],\n", " [ 88.94666 , 103.246666 , 113.206665 , ..., 617.97 ,\n", " 613.49664 , 598.55664 ],\n", " [ 91.32333 , 97.263336 , 102.89667 , ..., 628.2167 ,\n", " 609.39 , 589.24 ]],\n", " \n", " [[ 7.0533333, 9.296667 , 7.1433334, ..., 434.07666 ,\n", " 415.12668 , 415.12332 ],\n", " [ 11.54 , 12.503333 , 7.306667 , ..., 461.58667 ,\n", " 437.19333 , 439.36334 ],\n", " [ 10.3 , 7.02 , 10.273334 , ..., 473.96335 ,\n", " 471.77335 , 469.8 ],\n", " ...,\n", " [102.46667 , 106.166664 , 121.05334 , ..., 546.9867 ,\n", " 515.88 , 535.47 ],\n", " [ 91.456665 , 99.23333 , 100.34333 , ..., 537.61664 ,\n", " 526.1633 , 522.86 ],\n", " [ 86.67667 , 105.9 , 102.96333 , ..., 557.87665 ,\n", " 531.9267 , 540.55 ]],\n", " \n", " ...,\n", " \n", " [[ 6.036667 , 5.8966665, 10.293333 , ..., 471.85333 ,\n", " 445.10333 , 445.05334 ],\n", " [ 7.96 , 7.31 , 10.023334 , ..., 476.55334 ,\n", " 466.17334 , 460.61334 ],\n", " [ 16.743334 , 9.623333 , 9.4 , ..., 491.53333 ,\n", " 500.56 , 481.07666 ],\n", " ...,\n", " [109.973335 , 103.253334 , 110.07 , ..., 548.14 ,\n", " 570.4 , 547.89 ],\n", " [ 96.36 , 101.42333 , 114.07 , ..., 568.86334 ,\n", " 582.29333 , 562.96 ],\n", " [101.17333 , 114.42 , 107.44666 , ..., 603.2233 ,\n", " 591.5333 , 597.33 ]],\n", " \n", " [[ 6.38 , 8.286667 , 12.026667 , ..., 464.14667 ,\n", " 472.16666 , 448.75665 ],\n", " [ 9.106667 , 9.28 , 11.116667 , ..., 458.64667 ,\n", " 466.9 , 457.61334 ],\n", " [ 11.706667 , 9.413333 , 7.84 , ..., 485.55667 ,\n", " 483.34332 , 469.22333 ],\n", " ...,\n", " [117.76 , 105.10333 , 120.50667 , ..., 567.4767 ,\n", " 533.5 , 556.71 ],\n", " [104.61 , 96.76 , 117.23333 , ..., 561.13336 ,\n", " 575.7267 , 549.3 ],\n", " [101.596664 , 100.20333 , 113.07333 , ..., 586.7733 ,\n", " 581.29333 , 580.43665 ]],\n", " \n", " [[ 8.856667 , 8.816667 , 6.8133335, ..., 447.68 ,\n", " 447.02667 , 444.89 ],\n", " [ 8.953333 , 7.82 , 8.266666 , ..., 466.47333 ,\n", " 478.85 , 441.77 ],\n", " [ 9.926666 , 7.5666666, 5.1666665, ..., 491.48 ,\n", " 504.29 , 456.27335 ],\n", " ...,\n", " [101.88333 , 117.55334 , 115.97 , ..., 561.47 ,\n", " 557.2733 , 575.55664 ],\n", " [ 96.346664 , 108.27 , 103.263336 , ..., 569.1767 ,\n", " 553.23 , 550.21 ],\n", " [100.89667 , 110.89 , 111.776665 , ..., 567.9133 ,\n", " 561.93 , 588.19336 ]]],\n", " \n", " \n", " [[[ 10.54 , 7.8 , 7.286667 , ..., 536.41 ,\n", " 522.26666 , 497.58667 ],\n", " [ 12.966666 , 11.163333 , 15.286667 , ..., 538.52 ,\n", " 551.3233 , 525.69666 ],\n", " [ 4.5933332, 5.43 , 6.3533335, ..., 549.87335 ,\n", " 544.88 , 522.7133 ],\n", " ...,\n", " [115.29 , 126.363335 , 146.10333 , ..., 633.66 ,\n", " 633.12 , 627.37335 ],\n", " [108.71 , 114.40667 , 127.90667 , ..., 610.0267 ,\n", " 631.7867 , 590.59 ],\n", " [119.79667 , 119.93667 , 116.51 , ..., 607.01666 ,\n", " 611.36 , 576.56 ]],\n", " \n", " [[ 9.283334 , 11.823334 , 10.876667 , ..., 417.56332 ,\n", " 413.79666 , 425.01 ],\n", " [ 12.836667 , 12.766666 , 10.47 , ..., 439.86334 ,\n", " 437.63666 , 430.01 ],\n", " [ 12.7 , 10.503333 , 5.326667 , ..., 449.19 ,\n", " 444.98334 , 432.83 ],\n", " ...,\n", " [117.03333 , 122.583336 , 125.513336 , ..., 535.6633 ,\n", " 531.7167 , 510.87668 ],\n", " [100.42333 , 103.886665 , 113.35667 , ..., 552.24 ,\n", " 548.44666 , 513.93335 ],\n", " [103.87334 , 102.50667 , 113.47667 , ..., 529.04 ,\n", " 556.43335 , 549.0867 ]],\n", " \n", " [[ 12.6866665, 10.496667 , 9.72 , ..., 476.12 ,\n", " 470.01666 , 464.76666 ],\n", " [ 14.683333 , 12.633333 , 13.8133335, ..., 474.55 ,\n", " 490.97 , 463.45667 ],\n", " [ 10.603333 , 7.903333 , 9.906667 , ..., 495.00665 ,\n", " 513.9533 , 484.05667 ],\n", " ...,\n", " [109.513336 , 119.82333 , 129.33333 , ..., 596.20667 ,\n", " 576.6433 , 579.61664 ],\n", " [106.62 , 115.85333 , 121.67333 , ..., 607.0367 ,\n", " 601.1067 , 566.3 ],\n", " [116.456665 , 104.916664 , 109.56 , ..., 618.79333 ,\n", " 588.63336 , 601.33 ]],\n", " \n", " ...,\n", " \n", " [[ 7.9366665, 6.113333 , 5.363333 , ..., 449.06 ,\n", " 485.53333 , 440.84668 ],\n", " [ 11.893333 , 8.456667 , 7.7466664, ..., 471.47 ,\n", " 492.53 , 468.77 ],\n", " [ 8.643333 , 10.16 , 6.8166666, ..., 516.99 ,\n", " 492.01 , 485.89 ],\n", " ...,\n", " [111.32667 , 108.776665 , 126.596664 , ..., 570.2 ,\n", " 550.25336 , 569.32 ],\n", " [105.24333 , 106.63333 , 108.84 , ..., 602.45667 ,\n", " 588.2367 , 548.8567 ],\n", " [110.15 , 105.15 , 107.77 , ..., 606.68 ,\n", " 615.8233 , 587.0967 ]],\n", " \n", " [[ 10.94 , 14.286667 , 12.633333 , ..., 470.62 ,\n", " 456.4 , 460.83667 ],\n", " [ 9.723333 , 8.01 , 9.516666 , ..., 465.73334 ,\n", " 483.52 , 506.40332 ],\n", " [ 8.14 , 10.193334 , 5.3333335, ..., 505.86667 ,\n", " 507. , 497.58334 ],\n", " ...,\n", " [111.24333 , 99.97 , 114.69334 , ..., 582.38 ,\n", " 605.99335 , 570.32 ],\n", " [103.86 , 96.06 , 115.21667 , ..., 571.03 ,\n", " 551.13666 , 589.62665 ],\n", " [100.26667 , 104.29 , 106.19334 , ..., 605.32 ,\n", " 577.15 , 594.42334 ]],\n", " \n", " [[ 5.35 , 5.17 , 6.5666666, ..., 443.24335 ,\n", " 441.32 , 439.37668 ],\n", " [ 10.22 , 3.9833333, 10.3 , ..., 472.13666 ,\n", " 467.25333 , 488.27667 ],\n", " [ 8.096666 , 7.7166667, 8.323334 , ..., 477.92667 ,\n", " 493.98 , 494.25333 ],\n", " ...,\n", " [114.40667 , 111.11 , 110.816666 , ..., 577.52 ,\n", " 576.89 , 576.8367 ],\n", " [107.95333 , 101.996666 , 107.12666 , ..., 568.7733 ,\n", " 564.49 , 543.95 ],\n", " [ 99.87666 , 113.46333 , 109.92 , ..., 587.63666 ,\n", " 578.7233 , 583.08 ]]]], dtype=float32),\n", " 'regDX': array([[0. , 0.26460087, 0.70710677],\n", " [0. , 0.04855197, 0.22360681],\n", " [0. , 0.07489996, 0.22360681],\n", " [0. , 0.11297831, 0.30000001],\n", " [0. , 0.1229571 , 0.30000001],\n", " [0. , 0.06021283, 0.36055514],\n", " [0. , 0.09202497, 0.40000001],\n", " [0. , 0.0580359 , 0.22360681],\n", " [0. , 0.05019741, 0.28284273],\n", " [0. , 0.06751981, 0.22360681],\n", " [0. , 0.0518246 , 0.2 ],\n", " [0. , 0.0636097 , 0.2 ],\n", " [0. , 0.05248034, 0.22360681],\n", " [0. , 0.05410753, 0.22360681],\n", " [0. , 0.04644819, 0.22360681],\n", " [0. , 0.0562662 , 0.36055514],\n", " [0. , 0.05198549, 0.22360681],\n", " [0. , 0.05410752, 0.22360681],\n", " [0. , 0.05640871, 0.22360681],\n", " [0. , 0.05640871, 0.22360681],\n", " [0. , 0.04740138, 0.22360681],\n", " [0. , 0.0390863 , 0.28284273],\n", " [0. , 0.06377061, 0.22360681],\n", " [0. , 0.05410753, 0.22360681],\n", " [0. , 0.05248034, 0.22360681],\n", " [0. , 0.06883131, 0.22360681],\n", " [0. , 0.06456289, 0.2 ],\n", " [0. , 0.04299641, 0.22360681],\n", " [0. , 0.04855197, 0.22360681],\n", " [0. , 0.05410753, 0.22360681]]),\n", " 'Lyc': 434,\n", " 'Lxc': 432,\n", " 'max_proj': array([[ 46.620384, 35.208847, 51.66577 , ..., 208.57733 , 187.53116 ,\n", " 149.41336 ],\n", " [ 45.53692 , 41.455 , 38.901154, ..., 174.70178 , 163.37439 ,\n", " 176.69644 ],\n", " [ 46.35115 , 42.589615, 46.69154 , ..., 219.80383 , 227.54004 ,\n", " 204.86887 ],\n", " ...,\n", " [ 79.58886 , 114.85497 , 91.0754 , ..., 205.17432 , 194.49811 ,\n", " 192.78265 ],\n", " [ 74.388084, 79.02847 , 87.17464 , ..., 222.57721 , 216.2738 ,\n", " 175.62433 ],\n", " [ 82.01308 , 84.74691 , 89.561134, ..., 199.10529 , 214.18573 ,\n", " 205.28998 ]], dtype=float32),\n", " 'Vmax': array([134.35905457, 123.99681854, 119.96086121, ..., 0. ,\n", " 0. , 0. ]),\n", " 'ihop': array([1., 1., 1., ..., 0., 0., 0.]),\n", " 'Vsplit': array([0.9956013 , 1.00115836, 1.03165114, ..., 0. , 0. ,\n", " 0. ]),\n", " 'Vcorr': array([[2.41070247, 3.0349021 , 2.63656162, ..., 2.86526976, 3.08645248,\n", " 2.88534212],\n", " [3.61344194, 3.94789934, 4.09441757, ..., 3.02664685, 3.26891899,\n", " 2.88534212],\n", " [3.45880699, 3.82495308, 3.47255468, ..., 3.23110683, 3.03284302,\n", " 3.03284302],\n", " ...,\n", " [3.07509966, 3.08906794, 3.47316933, ..., 3.97715587, 4.16869164,\n", " 3.97497858],\n", " [3.05471516, 3.62808466, 3.27154589, ..., 3.41256595, 3.33516124,\n", " 3.33516124],\n", " [2.91497087, 3.34653044, 2.86425415, ..., 3.09711958, 2.9695015 ,\n", " 2.9695015 ]]),\n", " 'Vmap': array([array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.]], dtype=float32),\n", " array([[0. , 0. , 0. , ..., 0. , 0. ,\n", " 0. ],\n", " [0. , 0. , 0. , ..., 0. , 0. ,\n", " 0. ],\n", " [0. , 0. , 0. , ..., 0. , 5.9854507,\n", " 0. ],\n", " ...,\n", " [0. , 0. , 0. , ..., 5.1922097, 0. ,\n", " 0. ],\n", " [0. , 0. , 0. , ..., 0. , 0. ,\n", " 0. ],\n", " [0. , 0. , 0. , ..., 0. , 0. ,\n", " 0. ]], dtype=float32) ,\n", " array([[0. , 0. , 0. , ..., 0. , 0. ,\n", " 0. ],\n", " [0. , 0. , 0. , ..., 0. , 0. ,\n", " 0. ],\n", " [0. , 0. , 0. , ..., 0. , 0. ,\n", " 0. ],\n", " ...,\n", " [0. , 0. , 0. , ..., 0. , 0. ,\n", " 0. ],\n", " [0. , 0. , 0. , ..., 5.1405945, 5.261818 ,\n", " 0. ],\n", " [0. , 0. , 0. , ..., 0. , 0. ,\n", " 0. ]], dtype=float32) ,\n", " array([[0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " ...,\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.],\n", " [0., 0., 0., ..., 0., 0., 0.]], dtype=float32),\n", " array([[ 0. , 0. , 0. , 0. , 0. ,\n", " 0. , 0. , 0. , 0. , 0. ,\n", " 0. , 0. , 0. , 0. , 0. ,\n", " 0. , 0. , 0. , 0. , 0. ,\n", " 0. , 0. , 0. , 0. , 0. ,\n", " 0. , 0. ],\n", " [ 0. , 0. , 0. , 0. , 0. ,\n", " 0. , 0. , 0. , 0. , 0. ,\n", " 0. , 0. , 0. , 0. , 0. ,\n", " 0. , 0. , 0. , 0. , 0. ,\n", " 0. , 0. , 0. , 0. , 0. ,\n", " 0. , 0. ],\n", " [ 0. , 0. , 0. , 0. , 0. ,\n", " 0. , 0. , 0. , 0. , 0. ,\n", " 0. , 0. , 0. , 0. , 0. ,\n", " 0. , 0. , 0. , 0. , 0. ,\n", " 0. , 0. , 0. , 0. , 0. ,\n", " 0. , 0. ],\n", " [ 0. , 0. , 0. , 0. , 0. ,\n", " 0. , 0. , 0. , 0. , 0. ,\n", " 0. , 0. , 0. , 0. , 0. ,\n", " 0. , 0. , 0. , 0. , 0. ,\n", " 0. , 0. , 0. , 0. , 0. ,\n", " 0. , 0. ],\n", " [ 0. , 0. , 0. , 0. , 0. ,\n", " 0. , 0. , 0. , 0. , 0. ,\n", " 0. , 0. , 0. , 0. , 0. ,\n", " 0. , 0. , 0. , 0. , 0. ,\n", " 0. , 0. , 0. , 0. , 0. ,\n", " 0. , 0. ],\n", " [ 0. , 0. , 0. , 0. , 0. ,\n", " 0. , 0. , 0. , 0. , 0. ,\n", " 0. , 0. , 0. , 0. , 0. ,\n", " 0. , 0. , 0. , 0. , 0. ,\n", " 0. , 0. , 0. , 0. , 0. ,\n", " 0. , 0. ],\n", " [ 0. , 0. , 0. , 0. , 0. ,\n", " 0. , 0. , 0. , 0. , 0. ,\n", " 0. , 0. , 0. , 0. , 0. ,\n", " 0. , 0. , 0. , 0. , 0. ,\n", " 0. , 0. , 0. , 0. , 0. ,\n", " 0. , 0. ],\n", " [ 0. , 0. , 0. , 0. , 0. ,\n", " 0. , 0. , 0. , 0. , 0. ,\n", " 0. , 0. , 0. , 0. , 0. ,\n", " 0. , 0. , 0. , 0. , 0. ,\n", " 0. , 0. , 0. , 0. , 0. ,\n", " 0. , 0. ],\n", " [ 0. , 0. , 0. , 0. , 0. ,\n", " 0. , 0. , 0. , 0. , 0. ,\n", " 0. , 0. , 0. , 0. , 0. ,\n", " 0. , 0. , 0. , 0. , 0. ,\n", " 0. , 0. , 0. , 0. , 0. ,\n", " 0. , 0. ],\n", " [ 0. , 0. , 0. , 0. , 0. ,\n", " 0. , 0. , 0. , 0. , 0. ,\n", " 0. , 0. , 5.8577175, 0. , 0. ,\n", " 0. , 0. , 0. , 0. , 0. ,\n", " 0. , 0. , 0. , 0. , 0. ,\n", " 0. , 0. ],\n", " [ 0. , 0. , 0. , 0. , 0. ,\n", " 0. , 0. , 0. , 0. , 0. ,\n", " 0. , 0. , 9.073908 , 0. , 0. ,\n", " 0. , 0. , 0. , 0. , 0. ,\n", " 0. , 0. , 0. , 0. , 0. ,\n", " 0. , 0. ],\n", " [ 0. , 0. , 0. , 0. , 0. ,\n", " 0. , 0. , 0. , 0. , 0. ,\n", " 0. , 0. , 10.049647 , 0. , 0. ,\n", " 0. , 0. , 0. , 0. , 0. ,\n", " 0. , 0. , 0. , 0. , 0. ,\n", " 0. , 0. ],\n", " [ 0. , 0. , 0. , 0. , 0. ,\n", " 0. , 0. , 0. , 0. , 0. ,\n", " 0. , 0. , 5.685844 , 0. , 0. ,\n", " 0. , 0. , 0. , 0. , 0. ,\n", " 0. , 0. , 0. , 0. , 0. ,\n", " 0. , 0. ],\n", " [ 0. , 0. , 0. , 0. , 0. ,\n", " 0. , 0. , 0. , 0. , 0. ,\n", " 0. , 0. , 0. , 0. , 0. ,\n", " 0. , 0. , 0. , 0. , 0. ,\n", " 0. , 0. , 0. , 0. , 0. ,\n", " 0. , 0. ],\n", " [ 0. , 0. , 0. , 0. , 0. ,\n", " 0. , 0. , 0. , 0. , 0. ,\n", " 0. , 0. , 0. , 0. , 0. ,\n", " 0. , 0. , 0. , 0. , 0. ,\n", " 0. , 0. , 0. , 0. , 0. ,\n", " 0. , 0. ],\n", " [ 0. , 0. , 0. , 0. , 0. ,\n", " 0. , 0. , 0. , 0. , 0. ,\n", " 0. , 0. , 0. , 0. , 0. ,\n", " 0. , 0. , 0. , 0. , 0. ,\n", " 0. , 0. , 0. , 0. , 0. ,\n", " 0. , 0. ],\n", " [ 0. , 0. , 0. , 0. , 0. ,\n", " 0. , 0. , 0. , 0. , 0. ,\n", " 0. , 0. , 0. , 0. , 0. ,\n", " 0. , 0. , 0. , 0. , 0. ,\n", " 0. , 0. , 0. , 0. , 0. ,\n", " 0. , 0. ],\n", " [ 0. , 0. , 0. , 0. , 0. ,\n", " 0. , 0. , 0. , 0. , 7.262233 ,\n", " 5.1286793, 5.592461 , 7.8516684, 0. , 0. ,\n", " 0. , 0. , 0. , 0. , 0. ,\n", " 0. , 0. , 0. , 0. , 0. ,\n", " 0. , 0. ],\n", " [ 0. , 0. , 0. , 0. , 0. ,\n", " 0. , 0. , 0. , 0. , 0. ,\n", " 0. , 5.577756 , 7.207178 , 0. , 0. ,\n", " 0. , 0. , 0. , 0. , 0. ,\n", " 0. , 0. , 0. , 0. , 0. ,\n", " 0. , 0. ],\n", " [ 0. , 0. , 0. , 0. , 0. ,\n", " 0. , 0. , 0. , 0. , 0. ,\n", " 0. , 0. , 6.505272 , 0. , 0. ,\n", " 0. , 0. , 0. , 0. , 0. ,\n", " 0. , 0. , 0. , 0. , 0. ,\n", " 0. , 0. ],\n", " [ 0. , 0. , 0. , 0. , 0. ,\n", " 0. , 0. , 0. , 0. , 0. ,\n", " 0. , 0. , 6.261672 , 0. , 0. ,\n", " 0. , 0. , 0. , 0. , 0. ,\n", " 0. , 0. , 0. , 0. , 0. ,\n", " 0. , 0. ],\n", " [ 0. , 0. , 0. , 0. , 0. ,\n", " 0. , 0. , 0. , 0. , 0. ,\n", " 0. , 0. , 6.987685 , 0. , 0. ,\n", " 0. , 0. , 0. , 6.098998 , 0. ,\n", " 0. , 0. , 0. , 0. , 0. ,\n", " 0. , 0. ],\n", " [ 0. , 0. , 0. , 0. , 0. ,\n", " 0. , 0. , 0. , 0. , 0. ,\n", " 0. , 0. , 9.743567 , 0. , 0. ,\n", " 0. , 0. , 0. , 0. , 0. ,\n", " 0. , 0. , 0. , 0. , 0. ,\n", " 0. , 0. ],\n", " [ 0. , 0. , 0. , 0. , 0. ,\n", " 0. , 0. , 0. , 0. , 0. ,\n", " 0. , 0. , 9.648951 , 0. , 0. ,\n", " 0. , 0. , 0. , 0. , 0. ,\n", " 5.1595583, 0. , 0. , 0. , 0. ,\n", " 0. , 0. ],\n", " [ 0. , 0. , 0. , 0. , 0. ,\n", " 0. , 0. , 0. , 0. , 0. ,\n", " 0. , 0. , 11.347019 , 0. , 0. ,\n", " 0. , 0. , 0. , 0. , 0. ,\n", " 5.2799683, 0. , 0. , 0. , 0. ,\n", " 0. , 0. ],\n", " [ 0. , 0. , 0. , 0. , 0. ,\n", " 0. , 0. , 0. , 0. , 0. ,\n", " 0. , 0. , 12.564106 , 0. , 0. ,\n", " 0. , 0. , 0. , 0. , 0. ,\n", " 0. , 0. , 0. , 0. , 0. ,\n", " 0. , 0. ],\n", " [ 0. , 0. , 0. , 0. , 0. ,\n", " 0. , 0. , 0. , 0. , 0. ,\n", " 0. , 0. , 10.0486765, 0. , 0. ,\n", " 0. , 0. , 0. , 0. , 0. ,\n", " 0. , 0. , 0. , 0. , 0. ,\n", " 0. , 0. ],\n", " [ 0. , 0. , 0. , 0. , 0. ,\n", " 0. , 0. , 0. , 0. , 0. ,\n", " 0. , 0. , 5.155319 , 0. , 0. ,\n", " 0. , 0. , 0. , 0. , 0. ,\n", " 0. , 0. , 0. , 0. , 0. ,\n", " 0. , 0. ]], dtype=float32) ],\n", " dtype=object),\n", " 'timing': {'registration': 641.9894878864288,\n", " 'registration_metrics': 15.547569990158081,\n", " 'detection': 46.35976839065552,\n", " 'extraction': 43.62881112098694,\n", " 'classification': 0.03134584426879883,\n", " 'deconvolution': 0.7660236358642578,\n", " 'total_plane_runtime': 748.6714560985565}}" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "ops0" ] }, { "cell_type": "code", "execution_count": 6, "id": "0482fc21-00c0-42d0-8380-9672edbbaee5", "metadata": { "execution": { "iopub.execute_input": "2025-02-22T17:55:50.692001Z", "iopub.status.busy": "2025-02-22T17:55:50.692001Z", "iopub.status.idle": "2025-02-22T17:55:54.032343Z", "shell.execute_reply": "2025-02-22T17:55:54.032343Z", "shell.execute_reply.started": "2025-02-22T17:55:50.692001Z" } }, "outputs": [ { "data": { "text/plain": [ "'D:\\\\W2_DATA\\\\kbarber\\\\2025-02-17\\\\mk303\\\\results\\\\volume_stats.npy'" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "volume_stats_file = lbm_suite2p_python.volume.get_volume_stats(ops_files)\n", "volume_stats_file # runs stats and gives back the filename" ] }, { "cell_type": "code", "execution_count": 13, "id": "3454b980-b1ae-4be0-8c1b-83311418352e", "metadata": { "execution": { "iopub.execute_input": "2025-02-21T05:48:13.091293Z", "iopub.status.busy": "2025-02-21T05:48:13.091293Z", "iopub.status.idle": "2025-02-21T05:48:13.201564Z", "shell.execute_reply": "2025-02-21T05:48:13.201519Z", "shell.execute_reply.started": "2025-02-21T05:48:13.091293Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[( 1, 601, 601, 1504.95532227, 635.71911621, 'D:\\\\W2_DATA\\\\kbarber\\\\2025-02-10\\\\mk303\\\\results\\\\plane_01_demo\\\\plane0\\\\ops.npy')\n", " ( 2, 709, 709, 1729.17712402, 759.26446533, 'D:\\\\W2_DATA\\\\kbarber\\\\2025-02-10\\\\mk303\\\\results\\\\plane_02_demo\\\\plane0\\\\ops.npy')\n", " ( 3, 840, 840, 1682.04052734, 771.42297363, 'D:\\\\W2_DATA\\\\kbarber\\\\2025-02-10\\\\mk303\\\\results\\\\plane_03_demo\\\\plane0\\\\ops.npy')\n", " ( 4, 937, 937, 1581.18676758, 803.08453369, 'D:\\\\W2_DATA\\\\kbarber\\\\2025-02-10\\\\mk303\\\\results\\\\plane_04_demo\\\\plane0\\\\ops.npy')\n", " ( 5, 1163, 1163, 1454.5435791 , 746.58349609, 'D:\\\\W2_DATA\\\\kbarber\\\\2025-02-10\\\\mk303\\\\results\\\\plane_05_demo\\\\plane0\\\\ops.npy')\n", " ( 6, 1306, 1306, 1436.0411377 , 701.63793945, 'D:\\\\W2_DATA\\\\kbarber\\\\2025-02-10\\\\mk303\\\\results\\\\plane_06_demo\\\\plane0\\\\ops.npy')\n", " ( 7, 537, 537, 55.10420609, 25.497509 , 'D:\\\\W2_DATA\\\\kbarber\\\\2025-02-10\\\\mk303\\\\results\\\\plane_07_demo\\\\plane0\\\\ops.npy')\n", " ( 8, 1572, 1572, 1194.73181152, 573.11859131, 'D:\\\\W2_DATA\\\\kbarber\\\\2025-02-10\\\\mk303\\\\results\\\\plane_08_demo\\\\plane0\\\\ops.npy')\n", " ( 9, 1697, 1697, 1068.63830566, 499.10424805, 'D:\\\\W2_DATA\\\\kbarber\\\\2025-02-10\\\\mk303\\\\results\\\\plane_09_demo\\\\plane0\\\\ops.npy')\n", " (10, 1678, 1678, 1031.76330566, 505.93670654, 'D:\\\\W2_DATA\\\\kbarber\\\\2025-02-10\\\\mk303\\\\results\\\\plane_10_demo\\\\plane0\\\\ops.npy')\n", " (11, 1598, 1598, 913.86999512, 463.93460083, 'D:\\\\W2_DATA\\\\kbarber\\\\2025-02-10\\\\mk303\\\\results\\\\plane_11_demo\\\\plane0\\\\ops.npy')\n", " (12, 1128, 1128, 723.86236572, 390.0612793 , 'D:\\\\W2_DATA\\\\kbarber\\\\2025-02-10\\\\mk303\\\\results\\\\plane_12_demo\\\\plane0\\\\ops.npy')\n", " (13, 730, 730, 606.41137695, 329.38095093, 'D:\\\\W2_DATA\\\\kbarber\\\\2025-02-10\\\\mk303\\\\results\\\\plane_13_demo\\\\plane0\\\\ops.npy')\n", " (14, 398, 398, 480.65631104, 255.62088013, 'D:\\\\W2_DATA\\\\kbarber\\\\2025-02-10\\\\mk303\\\\results\\\\plane_14_demo\\\\plane0\\\\ops.npy')]\n" ] } ], "source": [ "# plane, acc, rej, means, stds, ops-file\n", "print(np.load(volume_stats_file, allow_pickle=True))" ] }, { "cell_type": "code", "execution_count": 7, "id": "222e6cbe-7e30-431e-a5dc-2a34c0411fe8", "metadata": { "execution": { "iopub.execute_input": "2025-02-22T17:55:59.129811Z", "iopub.status.busy": "2025-02-22T17:55:59.129811Z", "iopub.status.idle": "2025-02-22T17:55:59.238886Z", "shell.execute_reply": "2025-02-22T17:55:59.238886Z", "shell.execute_reply.started": "2025-02-22T17:55:59.129811Z" } }, "outputs": [ { "data": { "text/plain": [ "['D:\\\\W2_DATA\\\\kbarber\\\\2025-02-17\\\\mk303\\\\results\\\\plane_01\\\\plane0\\\\stat.npy',\n", " 'D:\\\\W2_DATA\\\\kbarber\\\\2025-02-17\\\\mk303\\\\results\\\\plane_02\\\\plane0\\\\stat.npy',\n", " 'D:\\\\W2_DATA\\\\kbarber\\\\2025-02-17\\\\mk303\\\\results\\\\plane_03\\\\plane0\\\\stat.npy']" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "stat_files = mbo.get_files(save_path.parent, 'stat.npy', max_depth=5)\n", "stat_files[:3]" ] }, { "cell_type": "markdown", "id": "1fac2239", "metadata": {}, "source": [ "## Compare multiple z-planes" ] }, { "cell_type": "code", "execution_count": 6, "id": "b595aa2c-aab9-4239-8e22-21a1f3aff0c4", "metadata": { "execution": { "iopub.execute_input": "2025-02-25T19:22:42.038639Z", "iopub.status.busy": "2025-02-25T19:22:42.038639Z", "iopub.status.idle": "2025-02-25T19:22:42.282660Z", "shell.execute_reply": "2025-02-25T19:22:42.282660Z", "shell.execute_reply.started": "2025-02-25T19:22:42.038639Z" } }, "outputs": [], "source": [ "plane_6 = tifffile.memmap(input_files[5])\n", "plane_7 = tifffile.memmap(input_files[6])" ] }, { "cell_type": "code", "execution_count": 10, "id": "51a3affc-7749-4372-aea0-b94f5cb641b8", "metadata": { "execution": { "iopub.execute_input": "2025-02-25T19:23:16.642683Z", "iopub.status.busy": "2025-02-25T19:23:16.641683Z", "iopub.status.idle": "2025-02-25T19:23:18.922071Z", "shell.execute_reply": "2025-02-25T19:23:18.922071Z", "shell.execute_reply.started": "2025-02-25T19:23:16.642683Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "8196c5eb3d1b44929a01df54dd6f7e6b", "version_major": 2, "version_minor": 0 }, "text/plain": [ "RFBOutputContext()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "3986e5026089460093c5d8320bbfd29b", "version_major": 2, "version_minor": 0 }, "text/html": [ "
snapshot
" ], "text/plain": [ "JupyterRenderCanvas(css_height='300.0px', css_width='500.0px')" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" }, { "name": "stderr", "output_type": "stream", "text": [ "Draw error\n", "Traceback (most recent call last):\n", " File \"C:\\Users\\RBO\\miniforge3\\envs\\lsp\\lib\\site-packages\\rendercanvas\\_coreutils.py\", line 41, in log_exception\n", " yield\n", " File \"C:\\Users\\RBO\\miniforge3\\envs\\lsp\\lib\\site-packages\\rendercanvas\\base.py\", line 409, in _draw_frame_and_present\n", " self._draw_frame()\n", " File \"C:\\Users\\RBO\\miniforge3\\envs\\lsp\\lib\\site-packages\\fastplotlib\\layouts\\_imgui_figure.py\", line 111, in _render\n", " self.imgui_renderer.render()\n", " File \"C:\\Users\\RBO\\miniforge3\\envs\\lsp\\lib\\site-packages\\wgpu\\utils\\imgui\\imgui_renderer.py\", line 161, in render\n", " render_pass.end()\n", " File \"C:\\Users\\RBO\\miniforge3\\envs\\lsp\\lib\\site-packages\\wgpu\\backends\\wgpu_native\\_api.py\", line 3289, in end\n", " libf.wgpuRenderPassEncoderEnd(self._internal)\n", " File \"C:\\Users\\RBO\\miniforge3\\envs\\lsp\\lib\\site-packages\\wgpu\\backends\\wgpu_native\\_helpers.py\", line 394, in proxy_func\n", " raise wgpu_error # the frame above is more interesting ↑↑\n", "wgpu._classes.GPUValidationError: Validation Error\n", "\n", "Caused by:\n", " In wgpuRenderPassEncoderEnd\n", " In a set_viewport command\n", " Viewport has invalid rect Rect { x: 0.0, y: 0.0, w: 500.0, h: 300.0 }; origin and/or size is less than or equal to 0, and/or is not contained in the render target (400, 240, 1)\n" ] } ], "source": [ "iw = fpl.ImageWidget(data=[plane_6, plane_7], graphic_kwargs={\"vmin\": -300, \"vmax\": 12000})\n", "iw.show()" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.16" } }, "nbformat": 4, "nbformat_minor": 5 }