LBM-Suite2p-Python Documentation#
Volumetric 2-photon calcium imaging processing pipeline using Suite2p and Cellpose.
Primarily intended for Light Beads Microscopy (LBM) datasets, but viable with any planar or volumetric data.
Key capabilities:
Volumetric and/or Planar registration, detection, segmentation and deconvolution
Automatic detection and merging of ScanImage multi-ROI acquisitions
Post-processing filters for cell quality (area, eccentricity, event exceptionality)
ΔF/F calculation with multiple baseline methods
Volumetric statistics and Rastermap clustering
Quick Example#
import lbm_suite2p_python as lsp
# Process entire volume with the unified pipeline
results = lsp.pipeline(
input_data="D:/data/raw", # path to file, directory, or list of files
save_path=None, # default: save next to input
ops=None, # default: use MBO-optimized parameters
planes=None, # default: process all planes
)
Helpful Suite2p Resources#
Topic |
Resource |
Description |
|---|---|---|
Parameters |
Complete parameter reference |
|
Detection |
Video overview of detection algorithm |
|
Registration |
Troubleshooting registration artifacts |
|
Critical Parameters |
Discussion of tau, threshold_scaling, diameter |
|
ROI Overlap |
Understanding max_overlap and allow_overlap |
|
Fluorescence Signals |
Explanation of F and Fneu outputs |
External Links#
Suite2p Documentation - Core pipeline documentation
Cellpose Documentation - Anatomical segmentation
mbo_utilities Documentation - ScanImage I/O and assembly
GitHub Repository - Source code and issue tracker
Acknowledgements#
This pipeline is built on excellent open-source tools:
Suite2p - Registration and segmentation (Pachitariu, Stringer, et al.)
Cellpose - Anatomical segmentation (Stringer, Pachitariu, et al.)
Rastermap - Activity clustering (Stringer, Pachitariu)
Suite3D - Volumetric processing inspiration (Haydaroglu)
Special thanks to the Miller Brain Observatory team and all contributors for testing and feedback.