LBM-Suite2p-Python Documentation#
A volumetric 2-photon calcium imaging processing pipeline for Light Beads Microscopy (LBM) datasets.
What is LBM-Suite2p-Python?#
This package processes multi-plane calcium imaging data through a three-step workflow:
Convert raw TIFF files to binary format for Suite2p
Process each z-plane independently (registration → segmentation → extraction)
Aggregate planar results into volumetric outputs with visualization
Key capabilities:
Planar-by-planar Suite2p processing optimized for volumetric datasets
Automatic detection and merging of ScanImage multi-ROI acquisitions
Robust binary validation to avoid redundant reprocessing
Post-processing filters for cell quality (area, eccentricity, event exceptionality)
ΔF/F calculation with multiple baseline methods
Volumetric statistics and Rastermap clustering
Quick Example#
import mbo_utilities as mbo
import lbm_suite2p_python as lsp
data_dir = r"path/to/data"
files = mbo.get_files(data_dir, "tiff", max_depth=3)
# Extract metadata and create ops
metadata = mbo.get_metadata(files[0])
# Process entire volume
output_ops = lsp.run_volume(
    input_files=files,
    save_path=save_dir,
    ops=ops
)
Helpful Suite2p Resources#
Topic  | 
Resource  | 
Description  | 
|---|---|---|
Parameters  | 
Complete parameter reference  | 
|
Detection  | 
Video overview of detection algorithm  | 
|
Registration  | 
Troubleshooting registration artifacts  | 
|
Critical Parameters  | 
Discussion of tau, threshold_scaling, diameter  | 
|
ROI Overlap  | 
Understanding max_overlap and allow_overlap  | 
|
Fluorescence Signals  | 
Explanation of F and Fneu outputs  | 
External Links#
Suite2p Documentation - Core pipeline documentation
Cellpose Documentation - Anatomical segmentation
mbo_utilities Documentation - ScanImage I/O and assembly
GitHub Repository - Source code and issue tracker
Citation#
If you use this pipeline, please cite Suite2p and LBM:
Acknowledgements#
This pipeline is built on excellent open-source tools:
Suite2p - Registration and segmentation (Pachitariu, Stringer, et al.)
Cellpose - Anatomical segmentation (Stringer, Pachitariu, et al.)
Rastermap - Activity clustering (Stringer, Pachitariu)
scanreader - ScanImage metadata parsing (atlab)
Suite3D - Volumetric processing inspiration (Haydaroglu)
Special thanks to the Miller Brain Observatory team and all contributors for testing and feedback.