10. LBM Step 3: Segmentation#

10.1. Segmentation: Extract neuronal locations and planar time-traces.#

  • Apply the constrained nonnegative matrix factorization (CNMF) source separation algorithm to extract initial estimates of neuronal spatial footprints and calcium traces.

  • Apply quality control metrics to evaluate the initial estimates, and narrow down to the final set of estimates.

11. Caiman docs on component eval#

https://caiman.readthedocs.io/en/latest/Getting_Started.html#component-evaluation

The quality of detected components is evaluated with three parameters:

Spatial footprint consistency (rval): The spatial footprint of the component is compared with the frames where this component is active. Other component’s signals are subtracted from these frames, and the resulting raw data is correlated against the spatial component. This ensures that the raw data at the spatial footprint aligns with the extracted trace.

Trace signal-noise-ratio (SNR): Peak SNR is calculated from strong calcium transients and the noise estimate.

CNN-based classifier (cnn): The shape of components is evaluated by a 4-layered convolutional neural network trained on a manually annotated dataset. The CNN assigns a value of 0-1 to each component depending on its resemblance to a neuronal soma.

Each parameter has a low threshold:

  • (rval_lowest (default -1), SNR_lowest (default 0.5), cnn_lowest (default 0.1))

and high threshold

  • (rval_thr (default 0.8), min_SNR (default 2.5), min_cnn_thr (default 0.9))

A component has to exceed ALL low thresholds as well as ONE high threshold to be accepted.

import os
from pathlib import Path
import logging

import mesmerize_core as mc
from mesmerize_viz import *
from mesmerize_core.caiman_extensions.cnmf import cnmf_cache

from caiman.source_extraction.cnmf import cnmf, params
from caiman.motion_correction import high_pass_filter_space
from caiman.summary_images import correlation_pnr

# os.environ['WGPU_BACKEND_TYPE']='OpenGL'
# os.environ["CONDA_PREFIX_1"] = ""
os.environ["QT_PLATFORM_PLUGIN"] = "xcb"

import napari

import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
import zarr
from ipywidgets import IntSlider, VBox
from sidecar import Sidecar

try:
    import cv2
    cv2.setNumThreads(0)
except():
    pass

if os.name == "nt":
    # disable the cache on windows, this will be automatic in a future version
    cnmf_cache.set_maxsize(0)

pd.options.display.max_colwidth = 120

# set up logging
debug = True

logger = logging.getLogger("caiman")
logger.setLevel(logging.DEBUG)
handler = logging.StreamHandler()
log_format = logging.Formatter("%(relativeCreated)12d [%(filename)s:%(funcName)10s():%(lineno)s] [%(process)d] %(message)s")
handler.setFormatter(log_format)
logger.addHandler(handler)

logging.getLogger("caiman").setLevel(logging.WARNING)

12. Data Paths (TODO)#

The batch folder gets fairly cluttered with memmory mapped files. This needs some cleaning before putting into tree form.

/ raw_data_path/
    └── session_01
        ├── animal_01
        │   ├── pre_processed/
        │   │   ├── plane_1/
        │   │   ├── plane_1/
        │   │   ├── plane_2/
        │   │   └── plane_N/
        │   └── batch_dataframe.pickle

For this demo set the caiman_data dir as the parent raw data path

12.1. Batch path, this is where caiman outputs will be organized, same as the previous step#

This can be anywhere, it does not need to be under the parent raw data path.

parent_path = Path().home() / "caiman_data" / "animal_01" / "session_01"

batch_path = parent_path / 'batch.pickle'
mc.set_parent_raw_data_path(str(parent_path))

# you could alos load the registration batch and
# save this patch in a new dataframe (saved to disk automatically)

try:
    df = mc.load_batch(batch_path)
except (IsADirectoryError, FileNotFoundError):
    df = mc.create_batch(batch_path)

df=df.caiman.reload_from_disk()
df
algo item_name input_movie_path params outputs added_time ran_time algo_duration comments uuid
0 mcorr extracted_plane_1 tiff\extracted_plane_1.tif {'main': {'var_name_hdf5': 'mov', 'max_shifts': (10, 10), 'strides': (48, 48), 'overlaps': (24, 24), 'max_deviation_... {'mean-projection-path': b32f41bf-a9a5-4965-be7c-e6779e854328\b32f41bf-a9a5-4965-be7c-e6779e854328_mean_projection.n... 2024-09-26T11:56:54 2024-09-26T12:02:55 77.3 sec None b32f41bf-a9a5-4965-be7c-e6779e854328
1 cnmf cnmf_1 b32f41bf-a9a5-4965-be7c-e6779e854328\b32f41bf-a9a5-4965-be7c-e6779e854328-extracted_plane_1_els__d1_583_d2_536_d3_1_... {'main': {'fr': 9.62, 'dxy': (1.0, 1.0), 'decay_time': 0.4, 'strides': (48, 48), 'overlaps': (24, 24), 'max_shifts':... {'mean-projection-path': a057e39e-a2df-41d3-8217-83c9cd7ffb6d\a057e39e-a2df-41d3-8217-83c9cd7ffb6d_mean_projection.n... 2024-09-26T16:26:20 2024-09-26T16:28:48 143.18 sec None a057e39e-a2df-41d3-8217-83c9cd7ffb6d
2 cnmf cnmf_1 b32f41bf-a9a5-4965-be7c-e6779e854328\b32f41bf-a9a5-4965-be7c-e6779e854328-extracted_plane_1_els__d1_583_d2_536_d3_1_... {'main': {'fr': 9.62, 'dxy': (1.0, 1.0), 'decay_time': 0.4, 'p': 2, 'nb': 1, 'rf': 40, 'K': 150, 'gSig': [7.5, 7.5],... {'mean-projection-path': 0d8d3234-eab7-4f90-9405-53a2ad7917dc\0d8d3234-eab7-4f90-9405-53a2ad7917dc_mean_projection.n... 2024-10-01T12:09:56 2024-10-01T12:26:42 996.44 sec None 0d8d3234-eab7-4f90-9405-53a2ad7917dc
3 mcorr plane_1 tiff\extracted_plane_1.tif {'main': {'var_name_hdf5': 'mov', 'max_shifts': (10, 10), 'strides': (48, 48), 'overlaps': (24, 24), 'max_deviation_... {'mean-projection-path': c220fb8a-cef9-4784-91a2-84f33d760b75\c220fb8a-cef9-4784-91a2-84f33d760b75_mean_projection.n... 2024-10-01T13:24:33 2024-10-01T13:28:06 83.34 sec None c220fb8a-cef9-4784-91a2-84f33d760b75
4 mcorr plane_2 tiff\extracted_plane_2.tif {'main': {'var_name_hdf5': 'mov', 'max_shifts': (10, 10), 'strides': (48, 48), 'overlaps': (24, 24), 'max_deviation_... {'mean-projection-path': ecdbaa07-8893-4352-8658-19a8357306b8\ecdbaa07-8893-4352-8658-19a8357306b8_mean_projection.n... 2024-10-01T13:24:33 2024-10-01T13:29:29 83.69 sec None ecdbaa07-8893-4352-8658-19a8357306b8
5 mcorr plane_3 tiff\extracted_plane_3.tif {'main': {'var_name_hdf5': 'mov', 'max_shifts': (10, 10), 'strides': (48, 48), 'overlaps': (24, 24), 'max_deviation_... {'mean-projection-path': 48bad9bd-8a15-4d42-ae64-cb199ff498bc\48bad9bd-8a15-4d42-ae64-cb199ff498bc_mean_projection.n... 2024-10-01T13:24:33 2024-10-01T13:30:53 83.81 sec None 48bad9bd-8a15-4d42-ae64-cb199ff498bc
6 mcorr plane_4 tiff\extracted_plane_4.tif {'main': {'var_name_hdf5': 'mov', 'max_shifts': (10, 10), 'strides': (48, 48), 'overlaps': (24, 24), 'max_deviation_... {'mean-projection-path': 29217cfc-8575-4c35-b8b0-2fb29a4cb416\29217cfc-8575-4c35-b8b0-2fb29a4cb416_mean_projection.n... 2024-10-01T13:24:33 2024-10-01T13:32:17 82.93 sec None 29217cfc-8575-4c35-b8b0-2fb29a4cb416
7 mcorr plane_5 tiff\extracted_plane_5.tif {'main': {'var_name_hdf5': 'mov', 'max_shifts': (10, 10), 'strides': (48, 48), 'overlaps': (24, 24), 'max_deviation_... {'mean-projection-path': f9e87c87-913e-4027-a3bd-83c4c7182493\f9e87c87-913e-4027-a3bd-83c4c7182493_mean_projection.n... 2024-10-01T13:24:33 2024-10-01T13:33:39 82.31 sec None f9e87c87-913e-4027-a3bd-83c4c7182493
8 mcorr plane_6 tiff\extracted_plane_6.tif {'main': {'var_name_hdf5': 'mov', 'max_shifts': (10, 10), 'strides': (48, 48), 'overlaps': (24, 24), 'max_deviation_... {'mean-projection-path': baf9fc6a-9159-46fd-a6b8-603d02c30c99\baf9fc6a-9159-46fd-a6b8-603d02c30c99_mean_projection.n... 2024-10-01T13:24:33 2024-10-01T13:35:02 82.48 sec None baf9fc6a-9159-46fd-a6b8-603d02c30c99
9 mcorr plane_7 tiff\extracted_plane_7.tif {'main': {'var_name_hdf5': 'mov', 'max_shifts': (10, 10), 'strides': (48, 48), 'overlaps': (24, 24), 'max_deviation_... {'mean-projection-path': 7afd6d4c-7787-4e02-8dfc-fd0ce578164d\7afd6d4c-7787-4e02-8dfc-fd0ce578164d_mean_projection.n... 2024-10-01T13:24:33 2024-10-01T13:36:24 81.99 sec None 7afd6d4c-7787-4e02-8dfc-fd0ce578164d
10 mcorr plane_8 tiff\extracted_plane_8.tif {'main': {'var_name_hdf5': 'mov', 'max_shifts': (10, 10), 'strides': (48, 48), 'overlaps': (24, 24), 'max_deviation_... {'mean-projection-path': 28a3cd15-7671-4a5e-8744-9e8e73e35ee9\28a3cd15-7671-4a5e-8744-9e8e73e35ee9_mean_projection.n... 2024-10-01T13:24:33 2024-10-01T13:37:48 83.8 sec None 28a3cd15-7671-4a5e-8744-9e8e73e35ee9
11 mcorr plane_9 tiff\extracted_plane_9.tif {'main': {'var_name_hdf5': 'mov', 'max_shifts': (10, 10), 'strides': (48, 48), 'overlaps': (24, 24), 'max_deviation_... {'mean-projection-path': 379d8c22-52c6-4a6a-ae8e-69ccd1d5c5ed\379d8c22-52c6-4a6a-ae8e-69ccd1d5c5ed_mean_projection.n... 2024-10-01T13:24:33 2024-10-01T13:39:11 83.03 sec None 379d8c22-52c6-4a6a-ae8e-69ccd1d5c5ed
12 mcorr plane_10 tiff\extracted_plane_10.tif {'main': {'var_name_hdf5': 'mov', 'max_shifts': (10, 10), 'strides': (48, 48), 'overlaps': (24, 24), 'max_deviation_... {'mean-projection-path': 679fe640-ee6c-480c-bc71-e941000b8851\679fe640-ee6c-480c-bc71-e941000b8851_mean_projection.n... 2024-10-01T13:24:33 2024-10-01T13:40:33 82.51 sec None 679fe640-ee6c-480c-bc71-e941000b8851
13 mcorr plane_11 tiff\extracted_plane_11.tif {'main': {'var_name_hdf5': 'mov', 'max_shifts': (10, 10), 'strides': (48, 48), 'overlaps': (24, 24), 'max_deviation_... {'mean-projection-path': d5f2446a-0f42-472a-b969-735c7980b96b\d5f2446a-0f42-472a-b969-735c7980b96b_mean_projection.n... 2024-10-01T13:24:33 2024-10-01T13:41:56 82.22 sec None d5f2446a-0f42-472a-b969-735c7980b96b
14 mcorr plane_12 tiff\extracted_plane_12.tif {'main': {'var_name_hdf5': 'mov', 'max_shifts': (10, 10), 'strides': (48, 48), 'overlaps': (24, 24), 'max_deviation_... {'mean-projection-path': 888fa033-522f-4fec-bbd6-607f93fffc11\888fa033-522f-4fec-bbd6-607f93fffc11_mean_projection.n... 2024-10-01T13:24:33 2024-10-01T13:43:19 82.73 sec None 888fa033-522f-4fec-bbd6-607f93fffc11
15 mcorr plane_13 tiff\extracted_plane_13.tif {'main': {'var_name_hdf5': 'mov', 'max_shifts': (10, 10), 'strides': (48, 48), 'overlaps': (24, 24), 'max_deviation_... {'mean-projection-path': 9c53c1bc-e865-4977-89da-1c1bff7d4d21\9c53c1bc-e865-4977-89da-1c1bff7d4d21_mean_projection.n... 2024-10-01T13:24:33 2024-10-01T13:44:41 81.82 sec None 9c53c1bc-e865-4977-89da-1c1bff7d4d21
16 mcorr plane_14 tiff\extracted_plane_14.tif {'main': {'var_name_hdf5': 'mov', 'max_shifts': (10, 10), 'strides': (48, 48), 'overlaps': (24, 24), 'max_deviation_... {'mean-projection-path': 6f3101c4-9792-497a-939f-5a4780848a0d\6f3101c4-9792-497a-939f-5a4780848a0d_mean_projection.n... 2024-10-01T13:24:33 2024-10-01T13:46:03 82.3 sec None 6f3101c4-9792-497a-939f-5a4780848a0d
17 mcorr plane_15 tiff\extracted_plane_15.tif {'main': {'var_name_hdf5': 'mov', 'max_shifts': (10, 10), 'strides': (48, 48), 'overlaps': (24, 24), 'max_deviation_... {'mean-projection-path': 41ed61cb-4b3e-4117-9db6-e054b1d8c697\41ed61cb-4b3e-4117-9db6-e054b1d8c697_mean_projection.n... 2024-10-01T13:24:33 2024-10-01T13:47:26 82.44 sec None 41ed61cb-4b3e-4117-9db6-e054b1d8c697
18 mcorr plane_16 tiff\extracted_plane_16.tif {'main': {'var_name_hdf5': 'mov', 'max_shifts': (10, 10), 'strides': (48, 48), 'overlaps': (24, 24), 'max_deviation_... {'mean-projection-path': 625b34c3-eae3-4ad8-8015-5cc48122c7ec\625b34c3-eae3-4ad8-8015-5cc48122c7ec_mean_projection.n... 2024-10-01T13:24:33 2024-10-01T13:48:48 82.0 sec None 625b34c3-eae3-4ad8-8015-5cc48122c7ec
19 mcorr plane_17 tiff\extracted_plane_17.tif {'main': {'var_name_hdf5': 'mov', 'max_shifts': (10, 10), 'strides': (48, 48), 'overlaps': (24, 24), 'max_deviation_... {'mean-projection-path': e6a54884-a8a8-447b-be78-70957a62f161\e6a54884-a8a8-447b-be78-70957a62f161_mean_projection.n... 2024-10-01T13:24:33 2024-10-01T13:50:11 83.41 sec None e6a54884-a8a8-447b-be78-70957a62f161
20 mcorr plane_18 tiff\extracted_plane_18.tif {'main': {'var_name_hdf5': 'mov', 'max_shifts': (10, 10), 'strides': (48, 48), 'overlaps': (24, 24), 'max_deviation_... {'mean-projection-path': c21edffc-96ae-4103-b0e7-9ae4af82a6a7\c21edffc-96ae-4103-b0e7-9ae4af82a6a7_mean_projection.n... 2024-10-01T13:24:33 2024-10-01T13:51:33 81.7 sec None c21edffc-96ae-4103-b0e7-9ae4af82a6a7
21 mcorr plane_19 tiff\extracted_plane_19.tif {'main': {'var_name_hdf5': 'mov', 'max_shifts': (10, 10), 'strides': (48, 48), 'overlaps': (24, 24), 'max_deviation_... {'mean-projection-path': bbcf4810-f29e-4fde-a425-fa81a34e7c14\bbcf4810-f29e-4fde-a425-fa81a34e7c14_mean_projection.n... 2024-10-01T13:24:33 2024-10-01T13:52:56 82.56 sec None bbcf4810-f29e-4fde-a425-fa81a34e7c14
22 mcorr plane_20 tiff\extracted_plane_20.tif {'main': {'var_name_hdf5': 'mov', 'max_shifts': (10, 10), 'strides': (48, 48), 'overlaps': (24, 24), 'max_deviation_... {'mean-projection-path': 3f1399d9-951f-46b7-8424-8a5019984015\3f1399d9-951f-46b7-8424-8a5019984015_mean_projection.n... 2024-10-01T13:24:33 2024-10-01T13:54:19 83.5 sec None 3f1399d9-951f-46b7-8424-8a5019984015
23 mcorr plane_21 tiff\extracted_plane_21.tif {'main': {'var_name_hdf5': 'mov', 'max_shifts': (10, 10), 'strides': (48, 48), 'overlaps': (24, 24), 'max_deviation_... {'mean-projection-path': 666389a4-64ae-48e1-bcb0-381a48cff336\666389a4-64ae-48e1-bcb0-381a48cff336_mean_projection.n... 2024-10-01T13:24:33 2024-10-01T13:55:42 82.36 sec None 666389a4-64ae-48e1-bcb0-381a48cff336
24 mcorr plane_22 tiff\extracted_plane_22.tif {'main': {'var_name_hdf5': 'mov', 'max_shifts': (10, 10), 'strides': (48, 48), 'overlaps': (24, 24), 'max_deviation_... {'mean-projection-path': 09e7e82e-3365-409d-b961-33e51d022ba5\09e7e82e-3365-409d-b961-33e51d022ba5_mean_projection.n... 2024-10-01T13:24:33 2024-10-01T13:57:06 83.45 sec None 09e7e82e-3365-409d-b961-33e51d022ba5
25 mcorr plane_23 tiff\extracted_plane_23.tif {'main': {'var_name_hdf5': 'mov', 'max_shifts': (10, 10), 'strides': (48, 48), 'overlaps': (24, 24), 'max_deviation_... {'mean-projection-path': 450d0648-35c0-4528-b199-c448b4b3de7a\450d0648-35c0-4528-b199-c448b4b3de7a_mean_projection.n... 2024-10-01T13:24:33 2024-10-01T13:58:28 82.03 sec None 450d0648-35c0-4528-b199-c448b4b3de7a
26 mcorr plane_24 tiff\extracted_plane_24.tif {'main': {'var_name_hdf5': 'mov', 'max_shifts': (10, 10), 'strides': (48, 48), 'overlaps': (24, 24), 'max_deviation_... {'mean-projection-path': 31b2befb-4833-4a1e-83ef-4c177244bd33\31b2befb-4833-4a1e-83ef-4c177244bd33_mean_projection.n... 2024-10-01T13:24:33 2024-10-01T13:59:51 82.94 sec None 31b2befb-4833-4a1e-83ef-4c177244bd33
27 mcorr plane_25 tiff\extracted_plane_25.tif {'main': {'var_name_hdf5': 'mov', 'max_shifts': (10, 10), 'strides': (48, 48), 'overlaps': (24, 24), 'max_deviation_... {'mean-projection-path': b60dc323-4e70-4c7f-88f8-f7255e9252c5\b60dc323-4e70-4c7f-88f8-f7255e9252c5_mean_projection.n... 2024-10-01T13:24:33 2024-10-01T14:01:15 83.64 sec None b60dc323-4e70-4c7f-88f8-f7255e9252c5
28 mcorr plane_26 tiff\extracted_plane_26.tif {'main': {'var_name_hdf5': 'mov', 'max_shifts': (10, 10), 'strides': (48, 48), 'overlaps': (24, 24), 'max_deviation_... {'mean-projection-path': 6edd066c-6801-4c96-b71e-a34f3f446514\6edd066c-6801-4c96-b71e-a34f3f446514_mean_projection.n... 2024-10-01T13:24:33 2024-10-01T14:02:36 80.91 sec None 6edd066c-6801-4c96-b71e-a34f3f446514
29 mcorr plane_27 tiff\extracted_plane_27.tif {'main': {'var_name_hdf5': 'mov', 'max_shifts': (10, 10), 'strides': (48, 48), 'overlaps': (24, 24), 'max_deviation_... {'mean-projection-path': df55466a-8e2e-44d7-93d6-bc2ba0c5ab01\df55466a-8e2e-44d7-93d6-bc2ba0c5ab01_mean_projection.n... 2024-10-01T13:24:33 2024-10-01T14:03:58 81.79 sec None df55466a-8e2e-44d7-93d6-bc2ba0c5ab01
30 mcorr plane_28 tiff\extracted_plane_28.tif {'main': {'var_name_hdf5': 'mov', 'max_shifts': (10, 10), 'strides': (48, 48), 'overlaps': (24, 24), 'max_deviation_... {'mean-projection-path': 2f2fa5da-3177-42ac-967c-240a46091e79\2f2fa5da-3177-42ac-967c-240a46091e79_mean_projection.n... 2024-10-01T13:24:33 2024-10-01T14:05:20 82.38 sec None 2f2fa5da-3177-42ac-967c-240a46091e79
## TEMP
old_batch_path = parent_path / 'batch.pickle'
old_batch = mc.load_batch(old_batch_path)
mcorr_old = old_batch.iloc[0]

13. CNMF#

Perform CNMF using the mcorr output.

Similar to mcorr, put the CNMF params within the main key. The refit key will perform a second iteration, as shown in the caiman demo_pipeline.ipynb notebook.

13.1. Initial parameters#

In general in Caiman, estimators are first initialized with a set of parameters, and then they are fit against actual data in a separate step. In this section, we’ll define a parameters object that will subsequently be used to initialize our different estimators.

The parameters are divided into different categories. We will not discuss them in detail in this section, but will go over them when needed (and note that in this notebook we will mostly focus on CNMF and later steps):

  • fnames: List of paths to the file(s) to be analysed. Memmap and hdf5 result files will be saved in the same directory.

  • fr: Imaging frame rate in frames per second.

  • decay_time: Length of a typical transient in seconds. decay_time is an approximation of the time scale over which to expect a significant shift in the calcium signal during a transient. It defaults to 0.4, which is appropriate for fast indicators (GCaMP6f), slow indicators might use 1 or even more. However, decay_time does not have to precisely fit the data, approximations are enough.

  • p: Order of the autoregressive model. p = 0 turns deconvolution off. If transients in your data rise instantaneously, set p = 1 (occurs at low sample rate or slow indicator). If transients have visible rise time, set p = 2. If the wrong order is chosen, spikes are extracted unreliably.

  • nb: Number of global background components. This is a measure of the complexity of your background noise. Defaults to nb = 2, assuming a relatively homogeneous background. nb = 3 might fit for more complex noise, nb = 1 is usually too low. If nb is set too low, extracted traces appear too noisy, if nb is set too high, neuronal signal starts getting absorbed into the background reduction, resulting in reduced transients.

  • merge_thr: Merging threshold of components after initialization. If two components are correlated more than this value (e.g. when during initialization a neuron was split in two components), they are merged and treated as one.

  • rf: Half-size of the patches in pixels. Should be at least 3 to 4 times larger than the expected neuron size to capture the complete neuron and its local background. Larger patches lead to less parallelization.

  • stride: Overlap between patches in pixels. This should be roughly the neuron diameter. Larger overlap increases computational load, but yields better results during reconstruction/denoising of the data.

  • K : Number of (expected) components per patch. Adapt to rf and estimated component density.

  • gSig: Expected half-size of neurons in pixels [rows X columns]. CRUCIAL parameter for proper component detection.

  • method_init: Initialization method, depends mainly on the recording method. Use greedy_roi for 2p data, corr_pnr for 1p data, and sparse_nmf for dendritic/axonal data.

  • ssub/tsub: Spatial and temporal subsampling during initialization. Defaults to 1 (no compression). Can be set to 2 or even higher to save resources, but might impair detection/extraction quality.

Decay times

Protein

Max dF/F

Half-rise time (ms)

Time to peak (ms)

Half-decay time (ms)

jGCaMP7f (control)

0.21±0.1

24.8±6.6

99.5±30.2

181.9±76.0

jGCaMP8f

0.41±0.12

7.1±0.74

24.8±6.1

67.4±11.2

jGCaMP8m

0.76±0.22

7.1±0.61

29.0±11.2

118.3±13.2

jGCaMP8s

1.11±0.22

10.1±0.86

57.0±12.9

306.7±32.2

jGCaMP8.712*

0.66±0.18

10.9±1.24

41.6±8.1

94.8±13.3

rf = 300
k = 150

# general dataset-dependent parameters
fr = 9.62                   # imaging rate in frames per second
decay_time = 0.4            # length of a typical transient in seconds
dxy = (1., 1.)              # spatial resolution in x and y in (um per pixel)

# CNMF parameters for source extraction and deconvolution
p = 2                       # order of the autoregressive system (set p=2 if there is visible rise time in data)
gnb = 1                     # number of global background components (set to 1 or 2)
merge_thr = 0.80            # merging threshold, max correlation allowed
bas_nonneg = True           # enforce nonnegativity constraint on calcium traces (technically on baseline)
rf = 40                     # half-size of the patches in pixels (patch width is rf*2 + 1)
stride_cnmf = 10            # amount of overlap between the patches in pixels (overlap is stride_cnmf+1)
# K = 780                   # number of components per patch
gSig = np.array([7.5, 7.5])     # expected half-width of neurons in pixels (Gaussian kernel standard deviation)
# gSiz = None #2*gSig + 1     # Gaussian kernel width and hight
method_init = 'greedy_roi'  # initialization method (if analyzing dendritic data see demo_dendritic.ipynb)
# method_init = ''  # initialization method (if analyzing dendritic data see demo_dendritic.ipynb)
ssub = 1                    # spatial subsampling during initialization
tsub = 1                    # temporal subsampling during intialization

# parameters for component evaluation
min_SNR = 1.4               # signal to noise ratio for accepting a component
rval_thr = 0.80             # space correlation threshold for accepting a component
params_cnmf = {
    'main': {
        'fr': fr,
        'dxy': dxy,
        'decay_time': decay_time,
        'p': p,
        'nb': gnb,
        'rf': rf,
        'K':  k,
        'gSig': gSig,
        # 'gSiz': gSiz,
        'stride': stride_cnmf,
        'method_init': method_init,
        'rolling_sum': True,
        'use_cnn': False,
        'ssub': ssub,
        'tsub': tsub,
        'merge_thr': merge_thr,
        'bas_nonneg': bas_nonneg,
        'min_SNR': min_SNR,
        'rval_thr': rval_thr,
    },
    'refit': True
}

14. Run CNMF#

The API is identical to running mcorr.

You can provide the mcorr item row to input_movie_path and it will resolve the path of the input movie from the entry in the DataFrame.

df = df.caiman.reload_from_disk()

df.caiman.add_item(
    algo='cnmf',
    input_movie_path=df.iloc[0],
    params=params_cnmf,
    item_name=f'cnmf_1',
)
df
algo item_name input_movie_path params outputs added_time ran_time algo_duration comments uuid
0 mcorr extracted_plane_1 tiff\extracted_plane_1.tif {'main': {'var_name_hdf5': 'mov', 'max_shifts': (10, 10), 'strides': (48, 48), 'overlaps': (24, 24), 'max_deviation_... {'mean-projection-path': b32f41bf-a9a5-4965-be7c-e6779e854328\b32f41bf-a9a5-4965-be7c-e6779e854328_mean_projection.n... 2024-09-26T11:56:54 2024-09-26T12:02:55 77.3 sec None b32f41bf-a9a5-4965-be7c-e6779e854328
1 cnmf cnmf_1 b32f41bf-a9a5-4965-be7c-e6779e854328\b32f41bf-a9a5-4965-be7c-e6779e854328-extracted_plane_1_els__d1_583_d2_536_d3_1_... {'main': {'fr': 9.62, 'dxy': (1.0, 1.0), 'decay_time': 0.4, 'strides': (48, 48), 'overlaps': (24, 24), 'max_shifts':... {'mean-projection-path': a057e39e-a2df-41d3-8217-83c9cd7ffb6d\a057e39e-a2df-41d3-8217-83c9cd7ffb6d_mean_projection.n... 2024-09-26T16:26:20 2024-09-26T16:28:48 143.18 sec None a057e39e-a2df-41d3-8217-83c9cd7ffb6d
2 cnmf cnmf_1 b32f41bf-a9a5-4965-be7c-e6779e854328\b32f41bf-a9a5-4965-be7c-e6779e854328-extracted_plane_1_els__d1_583_d2_536_d3_1_... {'main': {'fr': 9.62, 'dxy': (1.0, 1.0), 'decay_time': 0.4, 'strides': (48, 48), 'overlaps': (24, 24), 'max_shifts':... {'mean-projection-path': 9777376d-092c-43db-b14a-c9be1e142e5c\9777376d-092c-43db-b14a-c9be1e142e5c_mean_projection.n... 2024-09-30T14:36:58 2024-09-30T14:41:40 161.74 sec None 9777376d-092c-43db-b14a-c9be1e142e5c
3 cnmf cnmf_1 b32f41bf-a9a5-4965-be7c-e6779e854328\b32f41bf-a9a5-4965-be7c-e6779e854328-extracted_plane_1_els__d1_583_d2_536_d3_1_... {'main': {'fr': 9.62, 'dxy': (1.0, 1.0), 'decay_time': 0.4, 'strides': (48, 48), 'overlaps': (24, 24), 'max_shifts':... {'mean-projection-path': 88177367-8fbf-499b-940e-1fb9c331b499\88177367-8fbf-499b-940e-1fb9c331b499_mean_projection.n... 2024-09-30T14:36:58 2024-09-30T14:44:32 172.71 sec None 88177367-8fbf-499b-940e-1fb9c331b499
4 cnmf cnmf_1 b32f41bf-a9a5-4965-be7c-e6779e854328\b32f41bf-a9a5-4965-be7c-e6779e854328-extracted_plane_1_els__d1_583_d2_536_d3_1_... {'main': {'fr': 9.62, 'dxy': (1.0, 1.0), 'decay_time': 0.4, 'strides': (48, 48), 'overlaps': (24, 24), 'max_shifts':... {'mean-projection-path': a3bd82e1-618e-4279-8a67-ae3fe52a10d2\a3bd82e1-618e-4279-8a67-ae3fe52a10d2_mean_projection.n... 2024-09-30T14:36:58 2024-09-30T14:47:31 179.02 sec None a3bd82e1-618e-4279-8a67-ae3fe52a10d2
5 cnmf cnmf_1 b32f41bf-a9a5-4965-be7c-e6779e854328\b32f41bf-a9a5-4965-be7c-e6779e854328-extracted_plane_1_els__d1_583_d2_536_d3_1_... {'main': {'fr': 9.62, 'dxy': (1.0, 1.0), 'decay_time': 0.4, 'strides': (48, 48), 'overlaps': (24, 24), 'max_shifts':... {'mean-projection-path': 03f6d9ca-c686-466e-9c8a-8076f787fc7b\03f6d9ca-c686-466e-9c8a-8076f787fc7b_mean_projection.n... 2024-09-30T14:36:58 2024-09-30T14:50:13 161.89 sec None 03f6d9ca-c686-466e-9c8a-8076f787fc7b
6 cnmf cnmf_1 b32f41bf-a9a5-4965-be7c-e6779e854328\b32f41bf-a9a5-4965-be7c-e6779e854328-extracted_plane_1_els__d1_583_d2_536_d3_1_... {'main': {'fr': 9.62, 'dxy': (1.0, 1.0), 'decay_time': 0.4, 'strides': (48, 48), 'overlaps': (24, 24), 'max_shifts':... {'mean-projection-path': 4bf6de48-8531-448f-b207-5f31299a12da\4bf6de48-8531-448f-b207-5f31299a12da_mean_projection.n... 2024-09-30T14:36:58 2024-09-30T14:53:04 170.76 sec None 4bf6de48-8531-448f-b207-5f31299a12da
7 cnmf cnmf_1 b32f41bf-a9a5-4965-be7c-e6779e854328\b32f41bf-a9a5-4965-be7c-e6779e854328-extracted_plane_1_els__d1_583_d2_536_d3_1_... {'main': {'fr': 9.62, 'dxy': (1.0, 1.0), 'decay_time': 0.4, 'strides': (48, 48), 'overlaps': (24, 24), 'max_shifts':... {'mean-projection-path': 3b9e8974-9d74-4f69-9370-ae731296203c\3b9e8974-9d74-4f69-9370-ae731296203c_mean_projection.n... 2024-09-30T14:36:58 2024-09-30T14:56:01 177.33 sec None 3b9e8974-9d74-4f69-9370-ae731296203c
8 cnmf cnmf_1 b32f41bf-a9a5-4965-be7c-e6779e854328\b32f41bf-a9a5-4965-be7c-e6779e854328-extracted_plane_1_els__d1_583_d2_536_d3_1_... {'main': {'fr': 9.62, 'dxy': (1.0, 1.0), 'decay_time': 0.4, 'strides': (48, 48), 'overlaps': (24, 24), 'max_shifts':... {'mean-projection-path': 705e6404-a883-4a19-9162-53a29aa62132\705e6404-a883-4a19-9162-53a29aa62132_mean_projection.n... 2024-09-30T14:36:58 2024-09-30T14:59:31 209.84 sec None 705e6404-a883-4a19-9162-53a29aa62132
9 cnmf cnmf_1 b32f41bf-a9a5-4965-be7c-e6779e854328\b32f41bf-a9a5-4965-be7c-e6779e854328-extracted_plane_1_els__d1_583_d2_536_d3_1_... {'main': {'fr': 9.62, 'dxy': (1.0, 1.0), 'decay_time': 0.4, 'strides': (48, 48), 'overlaps': (24, 24), 'max_shifts':... {'mean-projection-path': 8bed5bd7-9261-46bb-bc17-091241f3b414\8bed5bd7-9261-46bb-bc17-091241f3b414_mean_projection.n... 2024-09-30T14:36:58 2024-09-30T15:03:25 234.05 sec None 8bed5bd7-9261-46bb-bc17-091241f3b414
10 cnmf cnmf_1 b32f41bf-a9a5-4965-be7c-e6779e854328\b32f41bf-a9a5-4965-be7c-e6779e854328-extracted_plane_1_els__d1_583_d2_536_d3_1_... {'main': {'fr': 9.62, 'dxy': (1.0, 1.0), 'decay_time': 0.4, 'strides': (48, 48), 'overlaps': (24, 24), 'max_shifts':... {'mean-projection-path': 4cf62c5c-ed76-40ee-bf5c-6ed878aa924b\4cf62c5c-ed76-40ee-bf5c-6ed878aa924b_mean_projection.n... 2024-09-30T14:36:58 2024-09-30T15:07:23 237.78 sec None 4cf62c5c-ed76-40ee-bf5c-6ed878aa924b
11 cnmf cnmf_1 b32f41bf-a9a5-4965-be7c-e6779e854328\b32f41bf-a9a5-4965-be7c-e6779e854328-extracted_plane_1_els__d1_583_d2_536_d3_1_... {'main': {'fr': 9.62, 'dxy': (1.0, 1.0), 'decay_time': 0.4, 'strides': (48, 48), 'overlaps': (24, 24), 'max_shifts':... {'mean-projection-path': d46488b0-5e55-4e4f-84dc-9bb14dc9db17\d46488b0-5e55-4e4f-84dc-9bb14dc9db17_mean_projection.n... 2024-09-30T14:36:58 2024-09-30T15:10:50 207.15 sec None d46488b0-5e55-4e4f-84dc-9bb14dc9db17
12 cnmf cnmf_1 b32f41bf-a9a5-4965-be7c-e6779e854328\b32f41bf-a9a5-4965-be7c-e6779e854328-extracted_plane_1_els__d1_583_d2_536_d3_1_... {'main': {'fr': 9.62, 'dxy': (1.0, 1.0), 'decay_time': 0.4, 'strides': (48, 48), 'overlaps': (24, 24), 'max_shifts':... {'mean-projection-path': 5158332e-9c9a-4395-8044-70667b0ef869\5158332e-9c9a-4395-8044-70667b0ef869_mean_projection.n... 2024-09-30T14:36:58 2024-09-30T15:14:44 234.05 sec None 5158332e-9c9a-4395-8044-70667b0ef869
13 cnmf cnmf_1 b32f41bf-a9a5-4965-be7c-e6779e854328\b32f41bf-a9a5-4965-be7c-e6779e854328-extracted_plane_1_els__d1_583_d2_536_d3_1_... {'main': {'fr': 9.62, 'dxy': (1.0, 1.0), 'decay_time': 0.4, 'strides': (48, 48), 'overlaps': (24, 24), 'max_shifts':... {'mean-projection-path': f2d0cc26-ab86-4b8b-95ff-9aacf40c1c92\f2d0cc26-ab86-4b8b-95ff-9aacf40c1c92_mean_projection.n... 2024-09-30T14:36:58 2024-09-30T15:18:44 239.34 sec None f2d0cc26-ab86-4b8b-95ff-9aacf40c1c92
14 cnmf cnmf_1 b32f41bf-a9a5-4965-be7c-e6779e854328\b32f41bf-a9a5-4965-be7c-e6779e854328-extracted_plane_1_els__d1_583_d2_536_d3_1_... {'main': {'fr': 9.62, 'dxy': (1.0, 1.0), 'decay_time': 0.4, 'strides': (48, 48), 'overlaps': (24, 24), 'max_shifts':... {'mean-projection-path': 683f31bc-fdb2-4d27-b860-2fd272e83172\683f31bc-fdb2-4d27-b860-2fd272e83172_mean_projection.n... 2024-09-30T14:36:58 2024-09-30T15:23:16 272.6 sec None 683f31bc-fdb2-4d27-b860-2fd272e83172
15 cnmf cnmf_1 b32f41bf-a9a5-4965-be7c-e6779e854328\b32f41bf-a9a5-4965-be7c-e6779e854328-extracted_plane_1_els__d1_583_d2_536_d3_1_... {'main': {'fr': 9.62, 'dxy': (1.0, 1.0), 'decay_time': 0.4, 'strides': (48, 48), 'overlaps': (24, 24), 'max_shifts':... {'mean-projection-path': 05f36389-5168-47d5-9216-3feabe0a64f3\05f36389-5168-47d5-9216-3feabe0a64f3_mean_projection.n... 2024-09-30T14:36:58 2024-09-30T15:28:07 290.92 sec None 05f36389-5168-47d5-9216-3feabe0a64f3
16 cnmf cnmf_1 b32f41bf-a9a5-4965-be7c-e6779e854328\b32f41bf-a9a5-4965-be7c-e6779e854328-extracted_plane_1_els__d1_583_d2_536_d3_1_... {'main': {'fr': 9.62, 'dxy': (1.0, 1.0), 'decay_time': 0.4, 'strides': (48, 48), 'overlaps': (24, 24), 'max_shifts':... {'mean-projection-path': 79beadbb-7140-4c23-b914-768a4b5b4a4d\79beadbb-7140-4c23-b914-768a4b5b4a4d_mean_projection.n... 2024-09-30T14:36:58 2024-09-30T15:33:16 308.79 sec None 79beadbb-7140-4c23-b914-768a4b5b4a4d
17 cnmf cnmf_1 b32f41bf-a9a5-4965-be7c-e6779e854328\b32f41bf-a9a5-4965-be7c-e6779e854328-extracted_plane_1_els__d1_583_d2_536_d3_1_... {'main': {'fr': 9.62, 'dxy': (1.0, 1.0), 'decay_time': 0.4, 'strides': (48, 48), 'overlaps': (24, 24), 'max_shifts':... {'mean-projection-path': 926d6546-12c8-43ac-a033-9a4c97817b31\926d6546-12c8-43ac-a033-9a4c97817b31_mean_projection.n... 2024-09-30T14:36:58 2024-09-30T15:37:50 273.53 sec None 926d6546-12c8-43ac-a033-9a4c97817b31
18 cnmf cnmf_1 b32f41bf-a9a5-4965-be7c-e6779e854328\b32f41bf-a9a5-4965-be7c-e6779e854328-extracted_plane_1_els__d1_583_d2_536_d3_1_... {'main': {'fr': 9.62, 'dxy': (1.0, 1.0), 'decay_time': 0.4, 'strides': (48, 48), 'overlaps': (24, 24), 'max_shifts':... {'mean-projection-path': e1069d70-5735-47c4-8102-594a1f9f1702\e1069d70-5735-47c4-8102-594a1f9f1702_mean_projection.n... 2024-09-30T14:36:58 2024-09-30T15:42:58 308.31 sec None e1069d70-5735-47c4-8102-594a1f9f1702
19 cnmf cnmf_1 b32f41bf-a9a5-4965-be7c-e6779e854328\b32f41bf-a9a5-4965-be7c-e6779e854328-extracted_plane_1_els__d1_583_d2_536_d3_1_... {'main': {'fr': 9.62, 'dxy': (1.0, 1.0), 'decay_time': 0.4, 'p': 2, 'nb': 1, 'rf': 40, 'K': 150, 'gSig': [7.5, 7.5],... None 2024-10-01T12:09:56 None None None 0d8d3234-eab7-4f90-9405-53a2ad7917dc
df.iloc[-1].caiman.run()
Running 0d8d3234-eab7-4f90-9405-53a2ad7917dc with local backend
************************************************************************

Starting CNMF item:
algo                                                                                                                                   cnmf
item_name                                                                                                                            cnmf_1
input_movie_path    b32f41bf-a9a5-4965-be7c-e6779e854328\b32f41bf-a9a5-4965-be7c-e6779e854328-extracted_plane_1_els__d1_583_d2_536_d3_1_...
params              {'main': {'fr': 9.62, 'dxy': (1.0, 1.0), 'decay_time': 0.4, 'p': 2, 'nb': 1, 'rf': 40, 'K': 150, 'gSig': [7.5, 7.5],...
outputs                                                                                                                                None
added_time                                                                                                              2024-10-01T12:09:56
ran_time                                                                                                                               None
algo_duration                                                                                                                          None
comments                                                                                                                               None
uuid                                                                                                   0d8d3234-eab7-4f90-9405-53a2ad7917dc
Name: 19, dtype: object
With params:{'main': {'fr': 9.62, 'dxy': (1.0, 1.0), 'decay_time': 0.4, 'p': 2, 'nb': 1, 'rf': 40, 'K': 150, 'gSig': array([7.5, 7.5]), 'stride': 10, 'method_init': 'greedy_roi', 'rolling_sum': True, 'use_cnn': False, 'ssub': 1, 'tsub': 1, 'merge_thr': 0.8, 'bas_nonneg': True, 'min_SNR': 1.4, 'rval_thr': 0.8}, 'refit': True}
    80246405 [cluster.py:setup_cluster():225] [11836] The local backend is an alias for the multiprocessing backend, and the alias may be removed in some future version of Caiman
    80246405 [cluster.py:setup_cluster():225] [11836] The local backend is an alias for the multiprocessing backend, and the alias may be removed in some future version of Caiman
    80246514 [params.py:change_params():1151] [11836] In setting CNMFParams, non-pathed parameters were used; this is deprecated. In some future version of Caiman, allow_legacy will default to False (and eventually will be removed)
    80246514 [params.py:change_params():1151] [11836] In setting CNMFParams, non-pathed parameters were used; this is deprecated. In some future version of Caiman, allow_legacy will default to False (and eventually will be removed)
making memmap
    80257365 [cluster.py:setup_cluster():225] [11836] The local backend is an alias for the multiprocessing backend, and the alias may be removed in some future version of Caiman
    80257365 [cluster.py:setup_cluster():225] [11836] The local backend is an alias for the multiprocessing backend, and the alias may be removed in some future version of Caiman
performing CNMF
fitting images
refitting
performing eval
<mesmerize_core.caiman_extensions.common.DummyProcess at 0x21847a824a0>

14.1. Check for an error#

df = df.caiman.reload_from_disk()
df.iloc[-1].outputs['traceback']
df.iloc[-1].params
{'main': {'fr': 9.62,
  'dxy': (1.0, 1.0),
  'decay_time': 0.4,
  'p': 2,
  'nb': 1,
  'rf': 40,
  'K': 150,
  'gSig': array([7.5, 7.5]),
  'stride': 10,
  'method_init': '',
  'rolling_sum': True,
  'use_cnn': False,
  'ssub': 1,
  'tsub': 1,
  'merge_thr': 0.8,
  'bas_nonneg': True,
  'min_SNR': 1.4,
  'rval_thr': 0.8},
 'refit': True}
df = df.caiman.reload_from_disk()
df.iloc[-1].params = params_cnmf
df.iloc[-1].caiman.run()
Running 2f191e31-12a0-4636-a75e-f3ab50e04198 with local backend
************************************************************************

Starting CNMF item:
algo                                                                                                                                   cnmf
item_name                                                                                                                            cnmf_1
input_movie_path    b32f41bf-a9a5-4965-be7c-e6779e854328\b32f41bf-a9a5-4965-be7c-e6779e854328-extracted_plane_1_els__d1_583_d2_536_d3_1_...
params              {'main': {'fr': 9.62, 'dxy': (1.0, 1.0), 'decay_time': 0.4, 'p': 2, 'nb': 1, 'rf': 40, 'K': 150, 'gSig': [7.5, 7.5],...
outputs             {'success': False, 'traceback': 'multiprocessing.pool.RemoteTraceback: 
"""
Traceback (most recent call last):
  Fil...
added_time                                                                                                              2024-10-01T11:59:30
ran_time                                                                                                                2024-10-01T12:04:35
algo_duration                                                                                                                     23.77 sec
comments                                                                                                                               None
uuid                                                                                                   2f191e31-12a0-4636-a75e-f3ab50e04198
Name: 24, dtype: object
With params:{'main': {'fr': 9.62, 'dxy': (1.0, 1.0), 'decay_time': 0.4, 'p': 2, 'nb': 1, 'rf': 40, 'K': 150, 'gSig': array([7.5, 7.5]), 'stride': 10, 'method_init': '', 'rolling_sum': True, 'use_cnn': False, 'ssub': 1, 'tsub': 1, 'merge_thr': 0.8, 'bas_nonneg': True, 'min_SNR': 1.4, 'rval_thr': 0.8}, 'refit': True}
    79988308 [cluster.py:setup_cluster():225] [11836] The local backend is an alias for the multiprocessing backend, and the alias may be removed in some future version of Caiman
    79988308 [cluster.py:setup_cluster():225] [11836] The local backend is an alias for the multiprocessing backend, and the alias may be removed in some future version of Caiman
    79988409 [params.py:change_params():1151] [11836] In setting CNMFParams, non-pathed parameters were used; this is deprecated. In some future version of Caiman, allow_legacy will default to False (and eventually will be removed)
    79988409 [params.py:change_params():1151] [11836] In setting CNMFParams, non-pathed parameters were used; this is deprecated. In some future version of Caiman, allow_legacy will default to False (and eventually will be removed)
making memmap
    79999702 [cluster.py:setup_cluster():225] [11836] The local backend is an alias for the multiprocessing backend, and the alias may be removed in some future version of Caiman
    79999702 [cluster.py:setup_cluster():225] [11836] The local backend is an alias for the multiprocessing backend, and the alias may be removed in some future version of Caiman
performing CNMF
fitting images
<mesmerize_core.caiman_extensions.common.DummyProcess at 0x2183a703670>

15. CNMF outputs#

Similar to mcorr, you can use the mesmerize-core API to fetch the outputs.

API reference for mesmerize-CNMF API reference for caiman-CNMF

15.1. CNMF Object#

mcorr_movie = df.iloc[0].mcorr.get_output()
cnmf_model = df.iloc[-1].cnmf.get_output()
num_traces = cnmf_model.estimates.C
num_traces.shape
(8533, 1730)
gSig = 3
corr, pnr = correlation_pnr(mcorr_movie[::2], gSig=gSig, swap_dim=False)

16. Interactive Parameter Exploration#

from ipywidgets import Tab, Text, Button, VBox, interact_manual, interactive
@interact_manual(parent_path=str(parent_path), batch_path=str(batch_path))
def start_widget(parent_path, batch_path):
    mc.set_parent_raw_data_path(parent_path)

    df = mc.load_batch(batch_path)

    tab = Tab()

    # mcorr_container = df.mcorr.viz(start_index=0)
    cnmf_container = df.cnmf.viz(start_index=19)

    tab.children = [cnmf_container.show()]
    tab.titles = ["cnmf"]
    display(tab)

16.1. Temporal components, residuals#

index = -1  # the last item added

rcb = df.iloc[index].cnmf.get_rcb()
residuals = df.iloc[index].cnmf.get_residuals()
input_movie = df.iloc[index].caiman.get_input_movie()

# temporal components
temporal = df.iloc[index].cnmf.get_temporal()

temporal_good = df.iloc[index].cnmf.get_temporal("good")
temporal_bad = df.iloc[index].cnmf.get_temporal("bad")

temporal_with_residuals = df.iloc[index].cnmf.get_temporal(add_residuals=True)

correlation_image = df.iloc[-1].caiman.get_corr_image()

components_good = df.iloc[-1].cnmf.get_good_components()
components_bad = df.iloc[-1].cnmf.get_bad_components()

mean_img = df.iloc[-1].caiman.get_projection('mean')
std_img = df.iloc[-1].caiman.get_projection('std')

masks = df.iloc[-1].cnmf.get_masks()

print(f'Temporal Components (good/bad): {temporal_good.shape} / {temporal_bad.shape}')
print(f'Spatial Components (good/bad): {components_good.shape} / {components_bad.shape}')
good_masks = df.iloc[-1].cnmf.get_masks('good')
bad_masks = df.iloc[-1].cnmf.get_masks('bad')
fig, ax = plt.subplots(1,2, sharey=True)
ax[0].imshow(mean_img)
ax[1].imshow(correlation_image)
<matplotlib.image.AxesImage at 0x7f7acd8fc810>
../_images/61937071e9f6b0bcb7f9ef2719778e2e8c5259e7f91d33cfb91c7be484b83304.png
cnmf_model.params
# dim order: txy[,z]
plt.plot(cnmf_model.estimates.C[3,:])
plt.show()
../_images/7af13c4a80c6dd82958c00d10be670a875377537e19e9745ef291911ce65d092.png

Many of the cnmf functions take a rich set of arguments

16.1.1. Get specific components#

df.iloc[-1].cnmf.get_temporal(np.array([1, 5, 9]))
array([[ 114.17567548, 1109.50506026, 1065.47162328, ...,  402.61607549,
         348.24701629,  304.12614734],
       [  45.03461595,   45.03461595,   45.03461595, ...,  132.04335154,
         126.66286509,  121.61509965],
       [   0.        ,  358.81892873,  391.91603586, ...,  270.95206299,
         256.85871484,  243.49842054]])

16.1.2. add risiduals / contours#

# get temporal with the residuals, i.e. C + YrA
temporal_with_residuals = df.iloc[index].cnmf.get_temporal(add_residuals=True)

viewer = napari.Viewer()
viewer.add_image(temporal_with_residuals, name='traces+residuals')
# get contours
contours = df.iloc[-1].cnmf.get_contours()
len(contours)
2
viz_cnmf = df.cnmf.viz()
viz_cnmf.show()

Returns: (list of np.ndarray of contour coordinates, list of center of mass)

# get_contours() also takes arguments
contours_good = df.iloc[index].cnmf.get_contours("good")
len(contours_good[0]) # number of contours

swap_dim

# get the first contour using swap_dim=True (default)
swap_dim_true = df.iloc[index].cnmf.get_contours()[0][0]
# get the first contour  with swap_dim=False
swap_dim_false = df.iloc[index].cnmf.get_contours(swap_dim=False)[0][0]

plt.plot(
    swap_dim_true[:, 0],
    swap_dim_true[:, 1],
    label="swap_dim=True"
)
plt.plot(
    swap_dim_false[:, 0],
    swap_dim_false[:, 1],
    label="swap_dim=False"
)
plt.legend()

# swap_dim swaps the x and y dims
plt.plot(
    swap_dim_true[:, 0],
    swap_dim_true[:, 1],
    linewidth=30
)
plt.plot(
    swap_dim_false[:, 1],
    swap_dim_false[:, 0],
    linewidth=10
)

17. Reconstructed movie - A * C#

18. Reconstructed background - b * f#

19. Residuals - Y - AC - bf#

Mesmerize-core provides these outputs as lazy arrays. This allows you to work with arrays that would otherwise be hundreds of gigabytes or terabytes in size.

rcm = df.iloc[index].cnmf.get_rcm()
rcm

20. Using LazyArrays#

rcm_accepted = df.iloc[index].cnmf.get_rcm("good")
rcm_rejected = df.iloc[index].cnmf.get_rcm("bad")

rcb = df.iloc[index].cnmf.get_rcb()
residuals = df.iloc[index].cnmf.get_residuals()
input_movie = df.iloc[index].caiman.get_input_movie()
rcb.shape
napari.view_image(rcb)

21. Parameter Gridsearch#

As shown for motion correction, the purpose of mesmerize-core is to perform parameter searches

# itertools.product makes it easy to loop through parameter variants
# basically, it's easier to read that deeply nested for loops
from copy import deepcopy
from itertools import product

# variants of several parameters
gSig_variants = [4, 6]
K_variants = [4, 8]
merge_thr_variants = [0.8, 0.95]

# always use deepcopy like before
new_params_cnmf = deepcopy(params_cnmf)

# create a parameter grid
parameter_grid = product(gSig_variants, K_variants, merge_thr_variants)

# a single for loop to go through all the various parameter combinations
for gSig, K, merge_thr in parameter_grid:
    # deep copy params dict just like before
    new_params_cnmf = deepcopy(new_params_cnmf)

    new_params_cnmf["main"]["gSig"] = [gSig, gSig]
    new_params_cnmf["main"]["K"] = K
    new_params_cnmf["main"]["merge_thr"] = merge_thr

    # add param combination variant to batch
    df.caiman.add_item(
        algo="cnmf",
        item_name=df.iloc[1]["item_name"],  # good mcorr item
        input_movie_path=df.iloc[1],
        params=new_params_cnmf
    )

21.1. Pull contours / good components#

row_ix = 1
# get the contours and center of masses using mesmerize_core
contours, coms = df.iloc[row_ix].cnmf.get_contours(component_indices="good", swap_dim=False)

# get the signal-to-noise ratio of each "good" component to color components
snr_comps = df.iloc[row_ix].cnmf.get_output().estimates.SNR_comp

# get the good component_ixs
good_ixs = df.iloc[row_ix].cnmf.get_good_components()

# only get snr_comps of good_ixs
snr_comps = snr_comps[good_ixs]

np.log10(snr_comps)[:10]

View the diffs

df.caiman.get_params_diffs(algo="cnmf", item_name=df.iloc[-1]["item_name"])
merge_thr K gSig
3 0.8 4 (4, 4)
4 0.95 4 (4, 4)
5 0.8 8 (4, 4)
6 0.95 8 (4, 4)
7 0.8 4 (6, 6)
8 0.95 4 (6, 6)
9 0.8 8 (6, 6)
10 0.95 8 (6, 6)

22. Run the cnmf batch items#

for i, row in df.iterrows():
    if row["outputs"] is not None: # item has already been run
        continue # skip

    process = row.caiman.run()

    # on Windows you MUST reload the batch dataframe after every iteration because it uses the `local` backend.
    # this is unnecessary on Linux & Mac
    # "DummyProcess" is used for local backend so this is automatic
    if process.__class__.__name__ == "DummyProcess":
        df = df.caiman.reload_from_disk()
Running 5cb543ec-5358-4b35-83cf-bfd19fa06a68 with local backend
************************************************************************

Starting CNMF item:
algo                                                                                                                                   cnmf
item_name                                                                                                                 extracted_plane_1
input_movie_path    b32f41bf-a9a5-4965-be7c-e6779e854328\b32f41bf-a9a5-4965-be7c-e6779e854328-extracted_plane_1_els__d1_583_d2_536_d3_1_...
params              {'main': {'fr': 9.62, 'dxy': (1.0, 1.0), 'decay_time': 0.4, 'strides': (48, 48), 'overlaps': (24, 24), 'max_shifts':...
outputs                                                                                                                                None
added_time                                                                                                              2024-09-27T14:48:59
ran_time                                                                                                                               None
algo_duration                                                                                                                          None
comments                                                                                                                               None
uuid                                                                                                   5cb543ec-5358-4b35-83cf-bfd19fa06a68
Name: 3, dtype: object
With params:{'main': {'fr': 9.62, 'dxy': (1.0, 1.0), 'decay_time': 0.4, 'strides': (48, 48), 'overlaps': (24, 24), 'max_shifts': (6, 6), 'max_deviation_rigid': 3, 'pw_rigid': True, 'p': 2, 'nb': 1, 'rf': 40, 'gSig': (4, 4), 'gSiz': None, 'stride': 10, 'method_init': 'greedy_roi', 'rolling_sum': True, 'use_cnn': False, 'ssub': 1, 'tsub': 1, 'merge_thr': 0.8, 'bas_nonneg': True, 'min_SNR': 1.5, 'rval_thr': 0.8, 'K': 4}, 'refit': True}
    16876777 [cluster.py:setup_cluster():225] [16612] The local backend is an alias for the multiprocessing backend, and the alias may be removed in some future version of Caiman
    16876888 [params.py:change_params():1151] [16612] In setting CNMFParams, non-pathed parameters were used; this is deprecated. In some future version of Caiman, allow_legacy will default to False (and eventually will be removed)
    16880718 [paths.py:get_tempdir():46] [16612] Default temporary dir C:\Users\RBO\caiman_data\temp does not exist, creating
making memmap
    16890809 [cluster.py:setup_cluster():225] [16612] The local backend is an alias for the multiprocessing backend, and the alias may be removed in some future version of Caiman
performing CNMF
fitting images
refitting
performing eval
Running df52a609-d986-4bc0-a0a2-526cbfda057d with local backend
************************************************************************

Starting CNMF item:
algo                                                                                                                                   cnmf
item_name                                                                                                                 extracted_plane_1
input_movie_path    b32f41bf-a9a5-4965-be7c-e6779e854328\b32f41bf-a9a5-4965-be7c-e6779e854328-extracted_plane_1_els__d1_583_d2_536_d3_1_...
params              {'main': {'fr': 9.62, 'dxy': (1.0, 1.0), 'decay_time': 0.4, 'strides': (48, 48), 'overlaps': (24, 24), 'max_shifts':...
outputs                                                                                                                                None
added_time                                                                                                              2024-09-27T14:48:59
ran_time                                                                                                                               None
algo_duration                                                                                                                          None
comments                                                                                                                               None
uuid                                                                                                   df52a609-d986-4bc0-a0a2-526cbfda057d
Name: 4, dtype: object
With params:{'main': {'fr': 9.62, 'dxy': (1.0, 1.0), 'decay_time': 0.4, 'strides': (48, 48), 'overlaps': (24, 24), 'max_shifts': (6, 6), 'max_deviation_rigid': 3, 'pw_rigid': True, 'p': 2, 'nb': 1, 'rf': 40, 'gSig': (4, 4), 'gSiz': None, 'stride': 10, 'method_init': 'greedy_roi', 'rolling_sum': True, 'use_cnn': False, 'ssub': 1, 'tsub': 1, 'merge_thr': 0.95, 'bas_nonneg': True, 'min_SNR': 1.5, 'rval_thr': 0.8, 'K': 4}, 'refit': True}
    16956929 [cluster.py:setup_cluster():225] [16612] The local backend is an alias for the multiprocessing backend, and the alias may be removed in some future version of Caiman
    16957033 [params.py:change_params():1151] [16612] In setting CNMFParams, non-pathed parameters were used; this is deprecated. In some future version of Caiman, allow_legacy will default to False (and eventually will be removed)
making memmap
    16967754 [cluster.py:setup_cluster():225] [16612] The local backend is an alias for the multiprocessing backend, and the alias may be removed in some future version of Caiman
performing CNMF
fitting images
refitting
performing eval
Running f38614e3-d632-434a-9721-290aceeb4907 with local backend
************************************************************************

Starting CNMF item:
algo                                                                                                                                   cnmf
item_name                                                                                                                 extracted_plane_1
input_movie_path    b32f41bf-a9a5-4965-be7c-e6779e854328\b32f41bf-a9a5-4965-be7c-e6779e854328-extracted_plane_1_els__d1_583_d2_536_d3_1_...
params              {'main': {'fr': 9.62, 'dxy': (1.0, 1.0), 'decay_time': 0.4, 'strides': (48, 48), 'overlaps': (24, 24), 'max_shifts':...
outputs                                                                                                                                None
added_time                                                                                                              2024-09-27T14:48:59
ran_time                                                                                                                               None
algo_duration                                                                                                                          None
comments                                                                                                                               None
uuid                                                                                                   f38614e3-d632-434a-9721-290aceeb4907
Name: 5, dtype: object
With params:{'main': {'fr': 9.62, 'dxy': (1.0, 1.0), 'decay_time': 0.4, 'strides': (48, 48), 'overlaps': (24, 24), 'max_shifts': (6, 6), 'max_deviation_rigid': 3, 'pw_rigid': True, 'p': 2, 'nb': 1, 'rf': 40, 'gSig': (4, 4), 'gSiz': None, 'stride': 10, 'method_init': 'greedy_roi', 'rolling_sum': True, 'use_cnn': False, 'ssub': 1, 'tsub': 1, 'merge_thr': 0.8, 'bas_nonneg': True, 'min_SNR': 1.5, 'rval_thr': 0.8, 'K': 8}, 'refit': True}
    17032862 [cluster.py:setup_cluster():225] [16612] The local backend is an alias for the multiprocessing backend, and the alias may be removed in some future version of Caiman
    17032966 [params.py:change_params():1151] [16612] In setting CNMFParams, non-pathed parameters were used; this is deprecated. In some future version of Caiman, allow_legacy will default to False (and eventually will be removed)
making memmap
    17043554 [cluster.py:setup_cluster():225] [16612] The local backend is an alias for the multiprocessing backend, and the alias may be removed in some future version of Caiman
performing CNMF
fitting images

23. Load outputs#

df = df.caiman.reload_from_disk()
df
algo item_name input_movie_path params outputs added_time ran_time algo_duration comments uuid
0 mcorr extracted_plane_1 tiff\extracted_plane_1.tif {'main': {'var_name_hdf5': 'mov', 'max_shifts': (10, 10), 'strides': (48, 48), 'overlaps': (24, 24), 'max_deviation_... {'mean-projection-path': b32f41bf-a9a5-4965-be7c-e6779e854328\b32f41bf-a9a5-4965-be7c-e6779e854328_mean_projection.n... 2024-09-26T11:56:54 2024-09-26T12:02:55 77.3 sec None b32f41bf-a9a5-4965-be7c-e6779e854328
1 cnmf cnmf_1 b32f41bf-a9a5-4965-be7c-e6779e854328\b32f41bf-a9a5-4965-be7c-e6779e854328-extracted_plane_1_els__d1_583_d2_536_d3_1_... {'main': {'fr': 9.62, 'dxy': (1.0, 1.0), 'decay_time': 0.4, 'strides': (48, 48), 'overlaps': (24, 24), 'max_shifts':... {'mean-projection-path': a057e39e-a2df-41d3-8217-83c9cd7ffb6d\a057e39e-a2df-41d3-8217-83c9cd7ffb6d_mean_projection.n... 2024-09-26T16:26:20 2024-09-26T16:28:48 143.18 sec None a057e39e-a2df-41d3-8217-83c9cd7ffb6d
2 cnmf cnmf_1 b32f41bf-a9a5-4965-be7c-e6779e854328\b32f41bf-a9a5-4965-be7c-e6779e854328-extracted_plane_1_els__d1_583_d2_536_d3_1_... {'main': {'fr': 9.62, 'dxy': (1.0, 1.0), 'decay_time': 0.4, 'p': 2, 'nb': 1, 'rf': 40, 'K': 150, 'gSig': [7.5, 7.5],... {'mean-projection-path': 0d8d3234-eab7-4f90-9405-53a2ad7917dc\0d8d3234-eab7-4f90-9405-53a2ad7917dc_mean_projection.n... 2024-10-01T12:09:56 2024-10-01T12:26:42 996.44 sec None 0d8d3234-eab7-4f90-9405-53a2ad7917dc
3 mcorr plane_1 tiff\extracted_plane_1.tif {'main': {'var_name_hdf5': 'mov', 'max_shifts': (10, 10), 'strides': (48, 48), 'overlaps': (24, 24), 'max_deviation_... {'mean-projection-path': c220fb8a-cef9-4784-91a2-84f33d760b75\c220fb8a-cef9-4784-91a2-84f33d760b75_mean_projection.n... 2024-10-01T13:24:33 2024-10-01T13:28:06 83.34 sec None c220fb8a-cef9-4784-91a2-84f33d760b75
4 mcorr plane_2 tiff\extracted_plane_2.tif {'main': {'var_name_hdf5': 'mov', 'max_shifts': (10, 10), 'strides': (48, 48), 'overlaps': (24, 24), 'max_deviation_... {'mean-projection-path': ecdbaa07-8893-4352-8658-19a8357306b8\ecdbaa07-8893-4352-8658-19a8357306b8_mean_projection.n... 2024-10-01T13:24:33 2024-10-01T13:29:29 83.69 sec None ecdbaa07-8893-4352-8658-19a8357306b8
5 mcorr plane_3 tiff\extracted_plane_3.tif {'main': {'var_name_hdf5': 'mov', 'max_shifts': (10, 10), 'strides': (48, 48), 'overlaps': (24, 24), 'max_deviation_... {'mean-projection-path': 48bad9bd-8a15-4d42-ae64-cb199ff498bc\48bad9bd-8a15-4d42-ae64-cb199ff498bc_mean_projection.n... 2024-10-01T13:24:33 2024-10-01T13:30:53 83.81 sec None 48bad9bd-8a15-4d42-ae64-cb199ff498bc
6 mcorr plane_4 tiff\extracted_plane_4.tif {'main': {'var_name_hdf5': 'mov', 'max_shifts': (10, 10), 'strides': (48, 48), 'overlaps': (24, 24), 'max_deviation_... {'mean-projection-path': 29217cfc-8575-4c35-b8b0-2fb29a4cb416\29217cfc-8575-4c35-b8b0-2fb29a4cb416_mean_projection.n... 2024-10-01T13:24:33 2024-10-01T13:32:17 82.93 sec None 29217cfc-8575-4c35-b8b0-2fb29a4cb416
7 mcorr plane_5 tiff\extracted_plane_5.tif {'main': {'var_name_hdf5': 'mov', 'max_shifts': (10, 10), 'strides': (48, 48), 'overlaps': (24, 24), 'max_deviation_... {'mean-projection-path': f9e87c87-913e-4027-a3bd-83c4c7182493\f9e87c87-913e-4027-a3bd-83c4c7182493_mean_projection.n... 2024-10-01T13:24:33 2024-10-01T13:33:39 82.31 sec None f9e87c87-913e-4027-a3bd-83c4c7182493
8 mcorr plane_6 tiff\extracted_plane_6.tif {'main': {'var_name_hdf5': 'mov', 'max_shifts': (10, 10), 'strides': (48, 48), 'overlaps': (24, 24), 'max_deviation_... {'mean-projection-path': baf9fc6a-9159-46fd-a6b8-603d02c30c99\baf9fc6a-9159-46fd-a6b8-603d02c30c99_mean_projection.n... 2024-10-01T13:24:33 2024-10-01T13:35:02 82.48 sec None baf9fc6a-9159-46fd-a6b8-603d02c30c99
9 mcorr plane_7 tiff\extracted_plane_7.tif {'main': {'var_name_hdf5': 'mov', 'max_shifts': (10, 10), 'strides': (48, 48), 'overlaps': (24, 24), 'max_deviation_... {'mean-projection-path': 7afd6d4c-7787-4e02-8dfc-fd0ce578164d\7afd6d4c-7787-4e02-8dfc-fd0ce578164d_mean_projection.n... 2024-10-01T13:24:33 2024-10-01T13:36:24 81.99 sec None 7afd6d4c-7787-4e02-8dfc-fd0ce578164d
10 mcorr plane_8 tiff\extracted_plane_8.tif {'main': {'var_name_hdf5': 'mov', 'max_shifts': (10, 10), 'strides': (48, 48), 'overlaps': (24, 24), 'max_deviation_... {'mean-projection-path': 28a3cd15-7671-4a5e-8744-9e8e73e35ee9\28a3cd15-7671-4a5e-8744-9e8e73e35ee9_mean_projection.n... 2024-10-01T13:24:33 2024-10-01T13:37:48 83.8 sec None 28a3cd15-7671-4a5e-8744-9e8e73e35ee9
11 mcorr plane_9 tiff\extracted_plane_9.tif {'main': {'var_name_hdf5': 'mov', 'max_shifts': (10, 10), 'strides': (48, 48), 'overlaps': (24, 24), 'max_deviation_... {'mean-projection-path': 379d8c22-52c6-4a6a-ae8e-69ccd1d5c5ed\379d8c22-52c6-4a6a-ae8e-69ccd1d5c5ed_mean_projection.n... 2024-10-01T13:24:33 2024-10-01T13:39:11 83.03 sec None 379d8c22-52c6-4a6a-ae8e-69ccd1d5c5ed
12 mcorr plane_10 tiff\extracted_plane_10.tif {'main': {'var_name_hdf5': 'mov', 'max_shifts': (10, 10), 'strides': (48, 48), 'overlaps': (24, 24), 'max_deviation_... {'mean-projection-path': 679fe640-ee6c-480c-bc71-e941000b8851\679fe640-ee6c-480c-bc71-e941000b8851_mean_projection.n... 2024-10-01T13:24:33 2024-10-01T13:40:33 82.51 sec None 679fe640-ee6c-480c-bc71-e941000b8851
13 mcorr plane_11 tiff\extracted_plane_11.tif {'main': {'var_name_hdf5': 'mov', 'max_shifts': (10, 10), 'strides': (48, 48), 'overlaps': (24, 24), 'max_deviation_... {'mean-projection-path': d5f2446a-0f42-472a-b969-735c7980b96b\d5f2446a-0f42-472a-b969-735c7980b96b_mean_projection.n... 2024-10-01T13:24:33 2024-10-01T13:41:56 82.22 sec None d5f2446a-0f42-472a-b969-735c7980b96b
14 mcorr plane_12 tiff\extracted_plane_12.tif {'main': {'var_name_hdf5': 'mov', 'max_shifts': (10, 10), 'strides': (48, 48), 'overlaps': (24, 24), 'max_deviation_... {'mean-projection-path': 888fa033-522f-4fec-bbd6-607f93fffc11\888fa033-522f-4fec-bbd6-607f93fffc11_mean_projection.n... 2024-10-01T13:24:33 2024-10-01T13:43:19 82.73 sec None 888fa033-522f-4fec-bbd6-607f93fffc11
15 mcorr plane_13 tiff\extracted_plane_13.tif {'main': {'var_name_hdf5': 'mov', 'max_shifts': (10, 10), 'strides': (48, 48), 'overlaps': (24, 24), 'max_deviation_... {'mean-projection-path': 9c53c1bc-e865-4977-89da-1c1bff7d4d21\9c53c1bc-e865-4977-89da-1c1bff7d4d21_mean_projection.n... 2024-10-01T13:24:33 2024-10-01T13:44:41 81.82 sec None 9c53c1bc-e865-4977-89da-1c1bff7d4d21
16 mcorr plane_14 tiff\extracted_plane_14.tif {'main': {'var_name_hdf5': 'mov', 'max_shifts': (10, 10), 'strides': (48, 48), 'overlaps': (24, 24), 'max_deviation_... {'mean-projection-path': 6f3101c4-9792-497a-939f-5a4780848a0d\6f3101c4-9792-497a-939f-5a4780848a0d_mean_projection.n... 2024-10-01T13:24:33 2024-10-01T13:46:03 82.3 sec None 6f3101c4-9792-497a-939f-5a4780848a0d
17 mcorr plane_15 tiff\extracted_plane_15.tif {'main': {'var_name_hdf5': 'mov', 'max_shifts': (10, 10), 'strides': (48, 48), 'overlaps': (24, 24), 'max_deviation_... {'mean-projection-path': 41ed61cb-4b3e-4117-9db6-e054b1d8c697\41ed61cb-4b3e-4117-9db6-e054b1d8c697_mean_projection.n... 2024-10-01T13:24:33 2024-10-01T13:47:26 82.44 sec None 41ed61cb-4b3e-4117-9db6-e054b1d8c697
18 mcorr plane_16 tiff\extracted_plane_16.tif {'main': {'var_name_hdf5': 'mov', 'max_shifts': (10, 10), 'strides': (48, 48), 'overlaps': (24, 24), 'max_deviation_... {'mean-projection-path': 625b34c3-eae3-4ad8-8015-5cc48122c7ec\625b34c3-eae3-4ad8-8015-5cc48122c7ec_mean_projection.n... 2024-10-01T13:24:33 2024-10-01T13:48:48 82.0 sec None 625b34c3-eae3-4ad8-8015-5cc48122c7ec
19 mcorr plane_17 tiff\extracted_plane_17.tif {'main': {'var_name_hdf5': 'mov', 'max_shifts': (10, 10), 'strides': (48, 48), 'overlaps': (24, 24), 'max_deviation_... {'mean-projection-path': e6a54884-a8a8-447b-be78-70957a62f161\e6a54884-a8a8-447b-be78-70957a62f161_mean_projection.n... 2024-10-01T13:24:33 2024-10-01T13:50:11 83.41 sec None e6a54884-a8a8-447b-be78-70957a62f161
20 mcorr plane_18 tiff\extracted_plane_18.tif {'main': {'var_name_hdf5': 'mov', 'max_shifts': (10, 10), 'strides': (48, 48), 'overlaps': (24, 24), 'max_deviation_... {'mean-projection-path': c21edffc-96ae-4103-b0e7-9ae4af82a6a7\c21edffc-96ae-4103-b0e7-9ae4af82a6a7_mean_projection.n... 2024-10-01T13:24:33 2024-10-01T13:51:33 81.7 sec None c21edffc-96ae-4103-b0e7-9ae4af82a6a7
21 mcorr plane_19 tiff\extracted_plane_19.tif {'main': {'var_name_hdf5': 'mov', 'max_shifts': (10, 10), 'strides': (48, 48), 'overlaps': (24, 24), 'max_deviation_... {'mean-projection-path': bbcf4810-f29e-4fde-a425-fa81a34e7c14\bbcf4810-f29e-4fde-a425-fa81a34e7c14_mean_projection.n... 2024-10-01T13:24:33 2024-10-01T13:52:56 82.56 sec None bbcf4810-f29e-4fde-a425-fa81a34e7c14
22 mcorr plane_20 tiff\extracted_plane_20.tif {'main': {'var_name_hdf5': 'mov', 'max_shifts': (10, 10), 'strides': (48, 48), 'overlaps': (24, 24), 'max_deviation_... {'mean-projection-path': 3f1399d9-951f-46b7-8424-8a5019984015\3f1399d9-951f-46b7-8424-8a5019984015_mean_projection.n... 2024-10-01T13:24:33 2024-10-01T13:54:19 83.5 sec None 3f1399d9-951f-46b7-8424-8a5019984015
23 mcorr plane_21 tiff\extracted_plane_21.tif {'main': {'var_name_hdf5': 'mov', 'max_shifts': (10, 10), 'strides': (48, 48), 'overlaps': (24, 24), 'max_deviation_... {'mean-projection-path': 666389a4-64ae-48e1-bcb0-381a48cff336\666389a4-64ae-48e1-bcb0-381a48cff336_mean_projection.n... 2024-10-01T13:24:33 2024-10-01T13:55:42 82.36 sec None 666389a4-64ae-48e1-bcb0-381a48cff336
24 mcorr plane_22 tiff\extracted_plane_22.tif {'main': {'var_name_hdf5': 'mov', 'max_shifts': (10, 10), 'strides': (48, 48), 'overlaps': (24, 24), 'max_deviation_... {'mean-projection-path': 09e7e82e-3365-409d-b961-33e51d022ba5\09e7e82e-3365-409d-b961-33e51d022ba5_mean_projection.n... 2024-10-01T13:24:33 2024-10-01T13:57:06 83.45 sec None 09e7e82e-3365-409d-b961-33e51d022ba5
25 mcorr plane_23 tiff\extracted_plane_23.tif {'main': {'var_name_hdf5': 'mov', 'max_shifts': (10, 10), 'strides': (48, 48), 'overlaps': (24, 24), 'max_deviation_... {'mean-projection-path': 450d0648-35c0-4528-b199-c448b4b3de7a\450d0648-35c0-4528-b199-c448b4b3de7a_mean_projection.n... 2024-10-01T13:24:33 2024-10-01T13:58:28 82.03 sec None 450d0648-35c0-4528-b199-c448b4b3de7a
26 mcorr plane_24 tiff\extracted_plane_24.tif {'main': {'var_name_hdf5': 'mov', 'max_shifts': (10, 10), 'strides': (48, 48), 'overlaps': (24, 24), 'max_deviation_... {'mean-projection-path': 31b2befb-4833-4a1e-83ef-4c177244bd33\31b2befb-4833-4a1e-83ef-4c177244bd33_mean_projection.n... 2024-10-01T13:24:33 2024-10-01T13:59:51 82.94 sec None 31b2befb-4833-4a1e-83ef-4c177244bd33
27 mcorr plane_25 tiff\extracted_plane_25.tif {'main': {'var_name_hdf5': 'mov', 'max_shifts': (10, 10), 'strides': (48, 48), 'overlaps': (24, 24), 'max_deviation_... {'mean-projection-path': b60dc323-4e70-4c7f-88f8-f7255e9252c5\b60dc323-4e70-4c7f-88f8-f7255e9252c5_mean_projection.n... 2024-10-01T13:24:33 2024-10-01T14:01:15 83.64 sec None b60dc323-4e70-4c7f-88f8-f7255e9252c5
28 mcorr plane_26 tiff\extracted_plane_26.tif {'main': {'var_name_hdf5': 'mov', 'max_shifts': (10, 10), 'strides': (48, 48), 'overlaps': (24, 24), 'max_deviation_... {'mean-projection-path': 6edd066c-6801-4c96-b71e-a34f3f446514\6edd066c-6801-4c96-b71e-a34f3f446514_mean_projection.n... 2024-10-01T13:24:33 2024-10-01T14:02:36 80.91 sec None 6edd066c-6801-4c96-b71e-a34f3f446514
29 mcorr plane_27 tiff\extracted_plane_27.tif {'main': {'var_name_hdf5': 'mov', 'max_shifts': (10, 10), 'strides': (48, 48), 'overlaps': (24, 24), 'max_deviation_... {'mean-projection-path': df55466a-8e2e-44d7-93d6-bc2ba0c5ab01\df55466a-8e2e-44d7-93d6-bc2ba0c5ab01_mean_projection.n... 2024-10-01T13:24:33 2024-10-01T14:03:58 81.79 sec None df55466a-8e2e-44d7-93d6-bc2ba0c5ab01
30 mcorr plane_28 tiff\extracted_plane_28.tif {'main': {'var_name_hdf5': 'mov', 'max_shifts': (10, 10), 'strides': (48, 48), 'overlaps': (24, 24), 'max_deviation_... {'mean-projection-path': 2f2fa5da-3177-42ac-967c-240a46091e79\2f2fa5da-3177-42ac-967c-240a46091e79_mean_projection.n... 2024-10-01T13:24:33 2024-10-01T14:05:20 82.38 sec None 2f2fa5da-3177-42ac-967c-240a46091e79
cnmf_params_all = df.iloc[2].params
cnmf_params_all
{'main': {'fr': 9.62,
  'dxy': (1.0, 1.0),
  'decay_time': 0.4,
  'p': 2,
  'nb': 1,
  'rf': 40,
  'K': 150,
  'gSig': array([7.5, 7.5]),
  'stride': 10,
  'method_init': 'greedy_roi',
  'rolling_sum': True,
  'use_cnn': False,
  'ssub': 1,
  'tsub': 1,
  'merge_thr': 0.8,
  'bas_nonneg': True,
  'min_SNR': 1.4,
  'rval_thr': 0.8},
 'refit': True}
cnmf_batch = parent_path / 'results'
cnmf_batch.mkdir(exist_ok=True, parents=True)
cnmf_batch = mc.load_batch(cnmf_batch / 'cnmf_batch.pickle')
cnmf_batch
algo item_name input_movie_path params outputs added_time ran_time algo_duration comments uuid
0 cnmf cnmf_1 tiff\extracted_plane_1.tif {'main': {'fr': 9.62, 'dxy': (1.0, 1.0), 'decay_time': 0.4, 'p': 2, 'nb': 1, 'rf': 40, 'K': 150, 'gSig': [7.5, 7.5],... {'mean-projection-path': faeb27e8-40b9-4e5a-ad8c-b9cc73c03635\faeb27e8-40b9-4e5a-ad8c-b9cc73c03635_mean_projection.n... 2024-10-01T16:34:44 2024-10-01T16:54:16 946.94 sec None faeb27e8-40b9-4e5a-ad8c-b9cc73c03635
1 cnmf cnmf_1 tiff\extracted_plane_2.tif {'main': {'fr': 9.62, 'dxy': (1.0, 1.0), 'decay_time': 0.4, 'p': 2, 'nb': 1, 'rf': 40, 'K': 150, 'gSig': [7.5, 7.5],... {'mean-projection-path': 89b676c7-9480-47d7-b190-e4bbc2a5decc\89b676c7-9480-47d7-b190-e4bbc2a5decc_mean_projection.n... 2024-10-01T16:34:44 2024-10-01T17:10:06 949.6 sec None 89b676c7-9480-47d7-b190-e4bbc2a5decc
2 cnmf cnmf_1 tiff\extracted_plane_3.tif {'main': {'fr': 9.62, 'dxy': (1.0, 1.0), 'decay_time': 0.4, 'p': 2, 'nb': 1, 'rf': 40, 'K': 150, 'gSig': [7.5, 7.5],... {'mean-projection-path': f03ead24-ab13-48e7-87c0-27d5940a7c91\f03ead24-ab13-48e7-87c0-27d5940a7c91_mean_projection.n... 2024-10-01T16:34:44 2024-10-01T17:28:57 1131.04 sec None f03ead24-ab13-48e7-87c0-27d5940a7c91
3 cnmf cnmf_1 tiff\extracted_plane_4.tif {'main': {'fr': 9.62, 'dxy': (1.0, 1.0), 'decay_time': 0.4, 'p': 2, 'nb': 1, 'rf': 40, 'K': 150, 'gSig': [7.5, 7.5],... {'mean-projection-path': 585a0fc2-40d4-45f2-badf-ba13d5cc77a6\585a0fc2-40d4-45f2-badf-ba13d5cc77a6_mean_projection.n... 2024-10-01T16:34:44 2024-10-01T17:51:18 1340.32 sec None 585a0fc2-40d4-45f2-badf-ba13d5cc77a6
4 cnmf cnmf_1 tiff\extracted_plane_5.tif {'main': {'fr': 9.62, 'dxy': (1.0, 1.0), 'decay_time': 0.4, 'p': 2, 'nb': 1, 'rf': 40, 'K': 150, 'gSig': [7.5, 7.5],... {'mean-projection-path': 544c2a52-0b90-4b74-baae-b2ca913c7c2a\544c2a52-0b90-4b74-baae-b2ca913c7c2a_mean_projection.n... 2024-10-01T16:34:44 2024-10-01T18:08:22 1024.35 sec None 544c2a52-0b90-4b74-baae-b2ca913c7c2a
5 cnmf cnmf_1 tiff\extracted_plane_6.tif {'main': {'fr': 9.62, 'dxy': (1.0, 1.0), 'decay_time': 0.4, 'p': 2, 'nb': 1, 'rf': 40, 'K': 150, 'gSig': [7.5, 7.5],... {'mean-projection-path': d6c3f33c-2b90-4c6d-a4ad-f237dae5f73b\d6c3f33c-2b90-4c6d-a4ad-f237dae5f73b_mean_projection.n... 2024-10-01T16:34:44 2024-10-01T18:24:00 937.73 sec None d6c3f33c-2b90-4c6d-a4ad-f237dae5f73b
6 cnmf cnmf_1 tiff\extracted_plane_7.tif {'main': {'fr': 9.62, 'dxy': (1.0, 1.0), 'decay_time': 0.4, 'p': 2, 'nb': 1, 'rf': 40, 'K': 150, 'gSig': [7.5, 7.5],... {'mean-projection-path': ca269a68-06d0-4f96-b508-87160fdf37ab\ca269a68-06d0-4f96-b508-87160fdf37ab_mean_projection.n... 2024-10-01T16:34:44 2024-10-01T18:39:39 939.58 sec None ca269a68-06d0-4f96-b508-87160fdf37ab
7 cnmf cnmf_1 tiff\extracted_plane_8.tif {'main': {'fr': 9.62, 'dxy': (1.0, 1.0), 'decay_time': 0.4, 'p': 2, 'nb': 1, 'rf': 40, 'K': 150, 'gSig': [7.5, 7.5],... {'mean-projection-path': a9cb2077-073a-4552-9669-e53ba0c96803\a9cb2077-073a-4552-9669-e53ba0c96803_mean_projection.n... 2024-10-01T16:34:44 2024-10-01T18:55:09 929.57 sec None a9cb2077-073a-4552-9669-e53ba0c96803
8 cnmf cnmf_1 tiff\extracted_plane_9.tif {'main': {'fr': 9.62, 'dxy': (1.0, 1.0), 'decay_time': 0.4, 'p': 2, 'nb': 1, 'rf': 40, 'K': 150, 'gSig': [7.5, 7.5],... {'mean-projection-path': c0205f69-ccb6-4304-9cee-18af09d11663\c0205f69-ccb6-4304-9cee-18af09d11663_mean_projection.n... 2024-10-01T16:34:44 2024-10-01T19:10:49 940.35 sec None c0205f69-ccb6-4304-9cee-18af09d11663
9 cnmf cnmf_1 tiff\extracted_plane_10.tif {'main': {'fr': 9.62, 'dxy': (1.0, 1.0), 'decay_time': 0.4, 'p': 2, 'nb': 1, 'rf': 40, 'K': 150, 'gSig': [7.5, 7.5],... {'mean-projection-path': 1fac642d-6cef-4a68-9415-737213b4462d\1fac642d-6cef-4a68-9415-737213b4462d_mean_projection.n... 2024-10-01T16:34:44 2024-10-01T19:28:15 1045.02 sec None 1fac642d-6cef-4a68-9415-737213b4462d
10 cnmf cnmf_1 tiff\extracted_plane_11.tif {'main': {'fr': 9.62, 'dxy': (1.0, 1.0), 'decay_time': 0.4, 'p': 2, 'nb': 1, 'rf': 40, 'K': 150, 'gSig': [7.5, 7.5],... {'mean-projection-path': 97569a0f-b5c4-41b5-9268-b4ddeda9d740\97569a0f-b5c4-41b5-9268-b4ddeda9d740_mean_projection.n... 2024-10-01T16:34:44 2024-10-01T19:45:46 1051.62 sec None 97569a0f-b5c4-41b5-9268-b4ddeda9d740
11 cnmf cnmf_1 tiff\extracted_plane_12.tif {'main': {'fr': 9.62, 'dxy': (1.0, 1.0), 'decay_time': 0.4, 'p': 2, 'nb': 1, 'rf': 40, 'K': 150, 'gSig': [7.5, 7.5],... {'mean-projection-path': c2d0864d-1313-4ded-8b7f-4a7f02947b2d\c2d0864d-1313-4ded-8b7f-4a7f02947b2d_mean_projection.n... 2024-10-01T16:34:44 2024-10-01T20:01:40 953.4 sec None c2d0864d-1313-4ded-8b7f-4a7f02947b2d
12 cnmf cnmf_1 tiff\extracted_plane_13.tif {'main': {'fr': 9.62, 'dxy': (1.0, 1.0), 'decay_time': 0.4, 'p': 2, 'nb': 1, 'rf': 40, 'K': 150, 'gSig': [7.5, 7.5],... {'mean-projection-path': 8301c084-fe7c-4e84-b8d7-db6fcc8893ed\8301c084-fe7c-4e84-b8d7-db6fcc8893ed_mean_projection.n... 2024-10-01T16:34:44 2024-10-01T20:17:40 960.7 sec None 8301c084-fe7c-4e84-b8d7-db6fcc8893ed
13 cnmf cnmf_1 tiff\extracted_plane_14.tif {'main': {'fr': 9.62, 'dxy': (1.0, 1.0), 'decay_time': 0.4, 'p': 2, 'nb': 1, 'rf': 40, 'K': 150, 'gSig': [7.5, 7.5],... {'mean-projection-path': 1eabd9f9-1a57-4c08-a830-9276371c00a9\1eabd9f9-1a57-4c08-a830-9276371c00a9_mean_projection.n... 2024-10-01T16:34:44 2024-10-01T20:33:51 970.13 sec None 1eabd9f9-1a57-4c08-a830-9276371c00a9
14 cnmf cnmf_1 tiff\extracted_plane_15.tif {'main': {'fr': 9.62, 'dxy': (1.0, 1.0), 'decay_time': 0.4, 'p': 2, 'nb': 1, 'rf': 40, 'K': 150, 'gSig': [7.5, 7.5],... {'mean-projection-path': 25be7a5b-dd16-42cd-bd4a-1312b4c6e791\25be7a5b-dd16-42cd-bd4a-1312b4c6e791_mean_projection.n... 2024-10-01T16:34:44 2024-10-01T20:52:06 1095.19 sec None 25be7a5b-dd16-42cd-bd4a-1312b4c6e791
15 cnmf cnmf_1 tiff\extracted_plane_16.tif {'main': {'fr': 9.62, 'dxy': (1.0, 1.0), 'decay_time': 0.4, 'p': 2, 'nb': 1, 'rf': 40, 'K': 150, 'gSig': [7.5, 7.5],... {'mean-projection-path': f87dc096-6bb2-40dd-8dff-20f1362423b0\f87dc096-6bb2-40dd-8dff-20f1362423b0_mean_projection.n... 2024-10-01T16:34:44 2024-10-01T21:08:23 977.02 sec None f87dc096-6bb2-40dd-8dff-20f1362423b0
16 cnmf cnmf_1 tiff\extracted_plane_17.tif {'main': {'fr': 9.62, 'dxy': (1.0, 1.0), 'decay_time': 0.4, 'p': 2, 'nb': 1, 'rf': 40, 'K': 150, 'gSig': [7.5, 7.5],... {'mean-projection-path': 0e6f8223-3002-4430-a987-d83a6d7c7bd8\0e6f8223-3002-4430-a987-d83a6d7c7bd8_mean_projection.n... 2024-10-01T16:34:44 2024-10-01T21:28:21 1197.8 sec None 0e6f8223-3002-4430-a987-d83a6d7c7bd8
17 cnmf cnmf_1 tiff\extracted_plane_18.tif {'main': {'fr': 9.62, 'dxy': (1.0, 1.0), 'decay_time': 0.4, 'p': 2, 'nb': 1, 'rf': 40, 'K': 150, 'gSig': [7.5, 7.5],... {'mean-projection-path': 52ab80e3-880f-4ae5-bd38-711c0138ebe2\52ab80e3-880f-4ae5-bd38-711c0138ebe2_mean_projection.n... 2024-10-01T16:34:44 2024-10-01T21:46:45 1104.12 sec None 52ab80e3-880f-4ae5-bd38-711c0138ebe2
18 cnmf cnmf_1 tiff\extracted_plane_19.tif {'main': {'fr': 9.62, 'dxy': (1.0, 1.0), 'decay_time': 0.4, 'p': 2, 'nb': 1, 'rf': 40, 'K': 150, 'gSig': [7.5, 7.5],... {'mean-projection-path': 65c8dfa4-2a65-4618-8240-7f08fccce4ad\65c8dfa4-2a65-4618-8240-7f08fccce4ad_mean_projection.n... 2024-10-01T16:34:44 2024-10-01T22:05:32 1126.88 sec None 65c8dfa4-2a65-4618-8240-7f08fccce4ad
19 cnmf cnmf_1 tiff\extracted_plane_20.tif {'main': {'fr': 9.62, 'dxy': (1.0, 1.0), 'decay_time': 0.4, 'p': 2, 'nb': 1, 'rf': 40, 'K': 150, 'gSig': [7.5, 7.5],... {'mean-projection-path': 473b088b-1b8e-4ecb-97e2-75eb299851b2\473b088b-1b8e-4ecb-97e2-75eb299851b2_mean_projection.n... 2024-10-01T16:34:44 2024-10-01T22:23:00 1048.28 sec None 473b088b-1b8e-4ecb-97e2-75eb299851b2
20 cnmf cnmf_1 tiff\extracted_plane_21.tif {'main': {'fr': 9.62, 'dxy': (1.0, 1.0), 'decay_time': 0.4, 'p': 2, 'nb': 1, 'rf': 40, 'K': 150, 'gSig': [7.5, 7.5],... {'mean-projection-path': 60d2fc66-20a9-4f00-b6f7-b9e80440efe7\60d2fc66-20a9-4f00-b6f7-b9e80440efe7_mean_projection.n... 2024-10-01T16:34:44 2024-10-01T22:41:10 1090.04 sec None 60d2fc66-20a9-4f00-b6f7-b9e80440efe7
21 cnmf cnmf_1 tiff\extracted_plane_22.tif {'main': {'fr': 9.62, 'dxy': (1.0, 1.0), 'decay_time': 0.4, 'p': 2, 'nb': 1, 'rf': 40, 'K': 150, 'gSig': [7.5, 7.5],... {'mean-projection-path': 8926526d-cc18-47e2-b599-1496b2c9f03e\8926526d-cc18-47e2-b599-1496b2c9f03e_mean_projection.n... 2024-10-01T16:34:44 2024-10-01T23:01:26 1215.23 sec None 8926526d-cc18-47e2-b599-1496b2c9f03e
22 cnmf cnmf_1 tiff\extracted_plane_23.tif {'main': {'fr': 9.62, 'dxy': (1.0, 1.0), 'decay_time': 0.4, 'p': 2, 'nb': 1, 'rf': 40, 'K': 150, 'gSig': [7.5, 7.5],... {'mean-projection-path': f2b1c811-e02a-4058-a15b-861ee1128793\f2b1c811-e02a-4058-a15b-861ee1128793_mean_projection.n... 2024-10-01T16:34:44 2024-10-01T23:20:00 1114.08 sec None f2b1c811-e02a-4058-a15b-861ee1128793
23 cnmf cnmf_1 tiff\extracted_plane_24.tif {'main': {'fr': 9.62, 'dxy': (1.0, 1.0), 'decay_time': 0.4, 'p': 2, 'nb': 1, 'rf': 40, 'K': 150, 'gSig': [7.5, 7.5],... {'mean-projection-path': 5c9bd42e-fb07-43f0-a18d-0b9e516db4ec\5c9bd42e-fb07-43f0-a18d-0b9e516db4ec_mean_projection.n... 2024-10-01T16:34:44 2024-10-01T23:38:35 1114.86 sec None 5c9bd42e-fb07-43f0-a18d-0b9e516db4ec
24 cnmf cnmf_1 tiff\extracted_plane_25.tif {'main': {'fr': 9.62, 'dxy': (1.0, 1.0), 'decay_time': 0.4, 'p': 2, 'nb': 1, 'rf': 40, 'K': 150, 'gSig': [7.5, 7.5],... {'mean-projection-path': 84004c56-81c1-474b-ab38-327fbf79bf8c\84004c56-81c1-474b-ab38-327fbf79bf8c_mean_projection.n... 2024-10-01T16:34:44 2024-10-01T23:57:28 1132.94 sec None 84004c56-81c1-474b-ab38-327fbf79bf8c
25 cnmf cnmf_1 tiff\extracted_plane_26.tif {'main': {'fr': 9.62, 'dxy': (1.0, 1.0), 'decay_time': 0.4, 'p': 2, 'nb': 1, 'rf': 40, 'K': 150, 'gSig': [7.5, 7.5],... {'mean-projection-path': 23521021-6791-4d41-855d-779eefce6840\23521021-6791-4d41-855d-779eefce6840_mean_projection.n... 2024-10-01T16:34:44 2024-10-02T00:14:28 1019.75 sec None 23521021-6791-4d41-855d-779eefce6840
26 cnmf cnmf_1 tiff\extracted_plane_27.tif {'main': {'fr': 9.62, 'dxy': (1.0, 1.0), 'decay_time': 0.4, 'p': 2, 'nb': 1, 'rf': 40, 'K': 150, 'gSig': [7.5, 7.5],... {'mean-projection-path': 07907a0b-b138-41e3-99a7-f7153738a640\07907a0b-b138-41e3-99a7-f7153738a640_mean_projection.n... 2024-10-01T16:34:44 2024-10-02T00:34:07 1179.51 sec None 07907a0b-b138-41e3-99a7-f7153738a640
27 cnmf cnmf_1 tiff\extracted_plane_28.tif {'main': {'fr': 9.62, 'dxy': (1.0, 1.0), 'decay_time': 0.4, 'p': 2, 'nb': 1, 'rf': 40, 'K': 150, 'gSig': [7.5, 7.5],... {'mean-projection-path': 8b7cbfb4-7c62-4780-a90c-5275cbe1f318\8b7cbfb4-7c62-4780-a90c-5275cbe1f318_mean_projection.n... 2024-10-01T16:34:44 2024-10-02T00:49:55 947.96 sec None 8b7cbfb4-7c62-4780-a90c-5275cbe1f318
for i in range(1, 31):
    item_name_str = df.iloc[i]['item_name']
    if 'plane' in item_name_str:

        filename = f'extracted_{item_name_str}.tif'
        filepath = parent_path / 'tiff' / filename
        # find output that matches item_name_str
        cnmf_batch.caiman.add_item(
            algo='cnmf',
            input_movie_path=filepath,
            params=cnmf_params_all,
            item_name=f'cnmf_1',
        )
cnmf_batch = cnmf_batch.caiman.reload_from_disk()
cnmf_batch
---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
Cell In[1], line 1
----> 1 cnmf_batch = cnmf_batch.caiman.reload_from_disk()
      2 cnmf_batch

NameError: name 'cnmf_batch' is not defined
for i, row in cnmf_batch.iterrows():
    if row["outputs"] is not None:
        continue

    process = row.caiman.run()

    # on Windows you MUST reload the batch dataframe after every iteration because it uses the `local` backend.
    # this is unnecessary on Linux & Mac
    # "DummyProcess" is used for local backend so this is automatic
    if process.__class__.__name__ == "DummyProcess":
        df = cnmf_batch.caiman.reload_from_disk()
Running faeb27e8-40b9-4e5a-ad8c-b9cc73c03635 with local backend
************************************************************************

Starting CNMF item:
algo                                                                                                                                   cnmf
item_name                                                                                                                            cnmf_1
input_movie_path                                                                                                 tiff\extracted_plane_1.tif
params              {'main': {'fr': 9.62, 'dxy': (1.0, 1.0), 'decay_time': 0.4, 'p': 2, 'nb': 1, 'rf': 40, 'K': 150, 'gSig': [7.5, 7.5],...
outputs                                                                                                                                None
added_time                                                                                                              2024-10-01T16:34:44
ran_time                                                                                                                               None
algo_duration                                                                                                                          None
comments                                                                                                                               None
uuid                                                                                                   faeb27e8-40b9-4e5a-ad8c-b9cc73c03635
Name: 0, dtype: object
With params:{'main': {'fr': 9.62, 'dxy': (1.0, 1.0), 'decay_time': 0.4, 'p': 2, 'nb': 1, 'rf': 40, 'K': 150, 'gSig': array([7.5, 7.5]), 'stride': 10, 'method_init': 'greedy_roi', 'rolling_sum': True, 'use_cnn': False, 'ssub': 1, 'tsub': 1, 'merge_thr': 0.8, 'bas_nonneg': True, 'min_SNR': 1.4, 'rval_thr': 0.8}, 'refit': True}
    12963988 [cluster.py:setup_cluster():225] [16596] The local backend is an alias for the multiprocessing backend, and the alias may be removed in some future version of Caiman
    12964133 [params.py:change_params():1151] [16596] In setting CNMFParams, non-pathed parameters were used; this is deprecated. In some future version of Caiman, allow_legacy will default to False (and eventually will be removed)
<tifffile.TiffFile 'extracted_plane_1.tif'> shaped series axes do not match shape
making memmap
    12977206 [cluster.py:setup_cluster():225] [16596] The local backend is an alias for the multiprocessing backend, and the alias may be removed in some future version of Caiman
performing CNMF
fitting images
refitting
performing eval
    13904154 [estimates.py:evaluate_components():1060] [16596] NaN values detected for space correlation in [8875]. Changing their value to -1.
Running 89b676c7-9480-47d7-b190-e4bbc2a5decc with local backend
************************************************************************

Starting CNMF item:
algo                                                                                                                                   cnmf
item_name                                                                                                                            cnmf_1
input_movie_path                                                                                                 tiff\extracted_plane_2.tif
params              {'main': {'fr': 9.62, 'dxy': (1.0, 1.0), 'decay_time': 0.4, 'p': 2, 'nb': 1, 'rf': 40, 'K': 150, 'gSig': [7.5, 7.5],...
outputs                                                                                                                                None
added_time                                                                                                              2024-10-01T16:34:44
ran_time                                                                                                                               None
algo_duration                                                                                                                          None
comments                                                                                                                               None
uuid                                                                                                   89b676c7-9480-47d7-b190-e4bbc2a5decc
Name: 1, dtype: object
With params:{'main': {'fr': 9.62, 'dxy': (1.0, 1.0), 'decay_time': 0.4, 'p': 2, 'nb': 1, 'rf': 40, 'K': 150, 'gSig': array([7.5, 7.5]), 'stride': 10, 'method_init': 'greedy_roi', 'rolling_sum': True, 'use_cnn': False, 'ssub': 1, 'tsub': 1, 'merge_thr': 0.8, 'bas_nonneg': True, 'min_SNR': 1.4, 'rval_thr': 0.8}, 'refit': True}
    13910972 [cluster.py:setup_cluster():225] [16596] The local backend is an alias for the multiprocessing backend, and the alias may be removed in some future version of Caiman
    13911069 [params.py:change_params():1151] [16596] In setting CNMFParams, non-pathed parameters were used; this is deprecated. In some future version of Caiman, allow_legacy will default to False (and eventually will be removed)
<tifffile.TiffFile 'extracted_plane_2.tif'> shaped series axes do not match shape
making memmap
    13924222 [cluster.py:setup_cluster():225] [16596] The local backend is an alias for the multiprocessing backend, and the alias may be removed in some future version of Caiman
performing CNMF
fitting images
refitting
performing eval
Running f03ead24-ab13-48e7-87c0-27d5940a7c91 with local backend
************************************************************************

Starting CNMF item:
algo                                                                                                                                   cnmf
item_name                                                                                                                            cnmf_1
input_movie_path                                                                                                 tiff\extracted_plane_3.tif
params              {'main': {'fr': 9.62, 'dxy': (1.0, 1.0), 'decay_time': 0.4, 'p': 2, 'nb': 1, 'rf': 40, 'K': 150, 'gSig': [7.5, 7.5],...
outputs                                                                                                                                None
added_time                                                                                                              2024-10-01T16:34:44
ran_time                                                                                                                               None
algo_duration                                                                                                                          None
comments                                                                                                                               None
uuid                                                                                                   f03ead24-ab13-48e7-87c0-27d5940a7c91
Name: 2, dtype: object
With params:{'main': {'fr': 9.62, 'dxy': (1.0, 1.0), 'decay_time': 0.4, 'p': 2, 'nb': 1, 'rf': 40, 'K': 150, 'gSig': array([7.5, 7.5]), 'stride': 10, 'method_init': 'greedy_roi', 'rolling_sum': True, 'use_cnn': False, 'ssub': 1, 'tsub': 1, 'merge_thr': 0.8, 'bas_nonneg': True, 'min_SNR': 1.4, 'rval_thr': 0.8}, 'refit': True}
    14860679 [cluster.py:setup_cluster():225] [16596] The local backend is an alias for the multiprocessing backend, and the alias may be removed in some future version of Caiman
    14860787 [params.py:change_params():1151] [16596] In setting CNMFParams, non-pathed parameters were used; this is deprecated. In some future version of Caiman, allow_legacy will default to False (and eventually will be removed)
<tifffile.TiffFile 'extracted_plane_3.tif'> shaped series axes do not match shape
making memmap
    14873610 [cluster.py:setup_cluster():225] [16596] The local backend is an alias for the multiprocessing backend, and the alias may be removed in some future version of Caiman
performing CNMF
fitting images
refitting
performing eval
Running 585a0fc2-40d4-45f2-badf-ba13d5cc77a6 with local backend
************************************************************************

Starting CNMF item:
algo                                                                                                                                   cnmf
item_name                                                                                                                            cnmf_1
input_movie_path                                                                                                 tiff\extracted_plane_4.tif
params              {'main': {'fr': 9.62, 'dxy': (1.0, 1.0), 'decay_time': 0.4, 'p': 2, 'nb': 1, 'rf': 40, 'K': 150, 'gSig': [7.5, 7.5],...
outputs                                                                                                                                None
added_time                                                                                                              2024-10-01T16:34:44
ran_time                                                                                                                               None
algo_duration                                                                                                                          None
comments                                                                                                                               None
uuid                                                                                                   585a0fc2-40d4-45f2-badf-ba13d5cc77a6
Name: 3, dtype: object
With params:{'main': {'fr': 9.62, 'dxy': (1.0, 1.0), 'decay_time': 0.4, 'p': 2, 'nb': 1, 'rf': 40, 'K': 150, 'gSig': array([7.5, 7.5]), 'stride': 10, 'method_init': 'greedy_roi', 'rolling_sum': True, 'use_cnn': False, 'ssub': 1, 'tsub': 1, 'merge_thr': 0.8, 'bas_nonneg': True, 'min_SNR': 1.4, 'rval_thr': 0.8}, 'refit': True}
    15991797 [cluster.py:setup_cluster():225] [16596] The local backend is an alias for the multiprocessing backend, and the alias may be removed in some future version of Caiman
    15991909 [params.py:change_params():1151] [16596] In setting CNMFParams, non-pathed parameters were used; this is deprecated. In some future version of Caiman, allow_legacy will default to False (and eventually will be removed)
<tifffile.TiffFile 'extracted_plane_4.tif'> shaped series axes do not match shape
making memmap
    16004684 [cluster.py:setup_cluster():225] [16596] The local backend is an alias for the multiprocessing backend, and the alias may be removed in some future version of Caiman
performing CNMF
fitting images
refitting
performing eval
Running 544c2a52-0b90-4b74-baae-b2ca913c7c2a with local backend
************************************************************************

Starting CNMF item:
algo                                                                                                                                   cnmf
item_name                                                                                                                            cnmf_1
input_movie_path                                                                                                 tiff\extracted_plane_5.tif
params              {'main': {'fr': 9.62, 'dxy': (1.0, 1.0), 'decay_time': 0.4, 'p': 2, 'nb': 1, 'rf': 40, 'K': 150, 'gSig': [7.5, 7.5],...
outputs                                                                                                                                None
added_time                                                                                                              2024-10-01T16:34:44
ran_time                                                                                                                               None
algo_duration                                                                                                                          None
comments                                                                                                                               None
uuid                                                                                                   544c2a52-0b90-4b74-baae-b2ca913c7c2a
Name: 4, dtype: object
With params:{'main': {'fr': 9.62, 'dxy': (1.0, 1.0), 'decay_time': 0.4, 'p': 2, 'nb': 1, 'rf': 40, 'K': 150, 'gSig': array([7.5, 7.5]), 'stride': 10, 'method_init': 'greedy_roi', 'rolling_sum': True, 'use_cnn': False, 'ssub': 1, 'tsub': 1, 'merge_thr': 0.8, 'bas_nonneg': True, 'min_SNR': 1.4, 'rval_thr': 0.8}, 'refit': True}
    17332164 [cluster.py:setup_cluster():225] [16596] The local backend is an alias for the multiprocessing backend, and the alias may be removed in some future version of Caiman
    17332271 [params.py:change_params():1151] [16596] In setting CNMFParams, non-pathed parameters were used; this is deprecated. In some future version of Caiman, allow_legacy will default to False (and eventually will be removed)
<tifffile.TiffFile 'extracted_plane_5.tif'> shaped series axes do not match shape
making memmap
    17344985 [cluster.py:setup_cluster():225] [16596] The local backend is an alias for the multiprocessing backend, and the alias may be removed in some future version of Caiman
performing CNMF
fitting images
refitting
performing eval
    18349840 [estimates.py:evaluate_components():1060] [16596] NaN values detected for space correlation in [8732]. Changing their value to -1.
Running d6c3f33c-2b90-4c6d-a4ad-f237dae5f73b with local backend
************************************************************************

Starting CNMF item:
algo                                                                                                                                   cnmf
item_name                                                                                                                            cnmf_1
input_movie_path                                                                                                 tiff\extracted_plane_6.tif
params              {'main': {'fr': 9.62, 'dxy': (1.0, 1.0), 'decay_time': 0.4, 'p': 2, 'nb': 1, 'rf': 40, 'K': 150, 'gSig': [7.5, 7.5],...
outputs                                                                                                                                None
added_time                                                                                                              2024-10-01T16:34:44
ran_time                                                                                                                               None
algo_duration                                                                                                                          None
comments                                                                                                                               None
uuid                                                                                                   d6c3f33c-2b90-4c6d-a4ad-f237dae5f73b
Name: 5, dtype: object
With params:{'main': {'fr': 9.62, 'dxy': (1.0, 1.0), 'decay_time': 0.4, 'p': 2, 'nb': 1, 'rf': 40, 'K': 150, 'gSig': array([7.5, 7.5]), 'stride': 10, 'method_init': 'greedy_roi', 'rolling_sum': True, 'use_cnn': False, 'ssub': 1, 'tsub': 1, 'merge_thr': 0.8, 'bas_nonneg': True, 'min_SNR': 1.4, 'rval_thr': 0.8}, 'refit': True}
    18356589 [cluster.py:setup_cluster():225] [16596] The local backend is an alias for the multiprocessing backend, and the alias may be removed in some future version of Caiman
    18356697 [params.py:change_params():1151] [16596] In setting CNMFParams, non-pathed parameters were used; this is deprecated. In some future version of Caiman, allow_legacy will default to False (and eventually will be removed)
<tifffile.TiffFile 'extracted_plane_6.tif'> shaped series axes do not match shape
making memmap
    18369597 [cluster.py:setup_cluster():225] [16596] The local backend is an alias for the multiprocessing backend, and the alias may be removed in some future version of Caiman
performing CNMF
fitting images
refitting
performing eval
    19287618 [estimates.py:evaluate_components():1060] [16596] NaN values detected for space correlation in [8801]. Changing their value to -1.
Running ca269a68-06d0-4f96-b508-87160fdf37ab with local backend
************************************************************************

Starting CNMF item:
algo                                                                                                                                   cnmf
item_name                                                                                                                            cnmf_1
input_movie_path                                                                                                 tiff\extracted_plane_7.tif
params              {'main': {'fr': 9.62, 'dxy': (1.0, 1.0), 'decay_time': 0.4, 'p': 2, 'nb': 1, 'rf': 40, 'K': 150, 'gSig': [7.5, 7.5],...
outputs                                                                                                                                None
added_time                                                                                                              2024-10-01T16:34:44
ran_time                                                                                                                               None
algo_duration                                                                                                                          None
comments                                                                                                                               None
uuid                                                                                                   ca269a68-06d0-4f96-b508-87160fdf37ab
Name: 6, dtype: object
With params:{'main': {'fr': 9.62, 'dxy': (1.0, 1.0), 'decay_time': 0.4, 'p': 2, 'nb': 1, 'rf': 40, 'K': 150, 'gSig': array([7.5, 7.5]), 'stride': 10, 'method_init': 'greedy_roi', 'rolling_sum': True, 'use_cnn': False, 'ssub': 1, 'tsub': 1, 'merge_thr': 0.8, 'bas_nonneg': True, 'min_SNR': 1.4, 'rval_thr': 0.8}, 'refit': True}
    19294349 [cluster.py:setup_cluster():225] [16596] The local backend is an alias for the multiprocessing backend, and the alias may be removed in some future version of Caiman
    19294490 [params.py:change_params():1151] [16596] In setting CNMFParams, non-pathed parameters were used; this is deprecated. In some future version of Caiman, allow_legacy will default to False (and eventually will be removed)
<tifffile.TiffFile 'extracted_plane_7.tif'> shaped series axes do not match shape
making memmap
    19307355 [cluster.py:setup_cluster():225] [16596] The local backend is an alias for the multiprocessing backend, and the alias may be removed in some future version of Caiman
performing CNMF
fitting images
refitting
performing eval
    20226922 [estimates.py:evaluate_components():1060] [16596] NaN values detected for space correlation in [8772]. Changing their value to -1.
Running a9cb2077-073a-4552-9669-e53ba0c96803 with local backend
************************************************************************

Starting CNMF item:
algo                                                                                                                                   cnmf
item_name                                                                                                                            cnmf_1
input_movie_path                                                                                                 tiff\extracted_plane_8.tif
params              {'main': {'fr': 9.62, 'dxy': (1.0, 1.0), 'decay_time': 0.4, 'p': 2, 'nb': 1, 'rf': 40, 'K': 150, 'gSig': [7.5, 7.5],...
outputs                                                                                                                                None
added_time                                                                                                              2024-10-01T16:34:44
ran_time                                                                                                                               None
algo_duration                                                                                                                          None
comments                                                                                                                               None
uuid                                                                                                   a9cb2077-073a-4552-9669-e53ba0c96803
Name: 7, dtype: object
With params:{'main': {'fr': 9.62, 'dxy': (1.0, 1.0), 'decay_time': 0.4, 'p': 2, 'nb': 1, 'rf': 40, 'K': 150, 'gSig': array([7.5, 7.5]), 'stride': 10, 'method_init': 'greedy_roi', 'rolling_sum': True, 'use_cnn': False, 'ssub': 1, 'tsub': 1, 'merge_thr': 0.8, 'bas_nonneg': True, 'min_SNR': 1.4, 'rval_thr': 0.8}, 'refit': True}
    20233980 [cluster.py:setup_cluster():225] [16596] The local backend is an alias for the multiprocessing backend, and the alias may be removed in some future version of Caiman
    20234094 [params.py:change_params():1151] [16596] In setting CNMFParams, non-pathed parameters were used; this is deprecated. In some future version of Caiman, allow_legacy will default to False (and eventually will be removed)
<tifffile.TiffFile 'extracted_plane_8.tif'> shaped series axes do not match shape
making memmap
    20246734 [cluster.py:setup_cluster():225] [16596] The local backend is an alias for the multiprocessing backend, and the alias may be removed in some future version of Caiman
performing CNMF
fitting images
refitting
performing eval
    21156660 [estimates.py:evaluate_components():1060] [16596] NaN values detected for space correlation in [8804]. Changing their value to -1.
Running c0205f69-ccb6-4304-9cee-18af09d11663 with local backend
************************************************************************

Starting CNMF item:
algo                                                                                                                                   cnmf
item_name                                                                                                                            cnmf_1
input_movie_path                                                                                                 tiff\extracted_plane_9.tif
params              {'main': {'fr': 9.62, 'dxy': (1.0, 1.0), 'decay_time': 0.4, 'p': 2, 'nb': 1, 'rf': 40, 'K': 150, 'gSig': [7.5, 7.5],...
outputs                                                                                                                                None
added_time                                                                                                              2024-10-01T16:34:44
ran_time                                                                                                                               None
algo_duration                                                                                                                          None
comments                                                                                                                               None
uuid                                                                                                   c0205f69-ccb6-4304-9cee-18af09d11663
Name: 8, dtype: object
With params:{'main': {'fr': 9.62, 'dxy': (1.0, 1.0), 'decay_time': 0.4, 'p': 2, 'nb': 1, 'rf': 40, 'K': 150, 'gSig': array([7.5, 7.5]), 'stride': 10, 'method_init': 'greedy_roi', 'rolling_sum': True, 'use_cnn': False, 'ssub': 1, 'tsub': 1, 'merge_thr': 0.8, 'bas_nonneg': True, 'min_SNR': 1.4, 'rval_thr': 0.8}, 'refit': True}
    21163606 [cluster.py:setup_cluster():225] [16596] The local backend is an alias for the multiprocessing backend, and the alias may be removed in some future version of Caiman
    21163705 [params.py:change_params():1151] [16596] In setting CNMFParams, non-pathed parameters were used; this is deprecated. In some future version of Caiman, allow_legacy will default to False (and eventually will be removed)
<tifffile.TiffFile 'extracted_plane_9.tif'> shaped series axes do not match shape
making memmap
    21176421 [cluster.py:setup_cluster():225] [16596] The local backend is an alias for the multiprocessing backend, and the alias may be removed in some future version of Caiman
performing CNMF
fitting images
refitting
performing eval
    22096999 [estimates.py:evaluate_components():1060] [16596] NaN values detected for space correlation in [8836]. Changing their value to -1.
Running 1fac642d-6cef-4a68-9415-737213b4462d with local backend
************************************************************************

Starting CNMF item:
algo                                                                                                                                   cnmf
item_name                                                                                                                            cnmf_1
input_movie_path                                                                                                tiff\extracted_plane_10.tif
params              {'main': {'fr': 9.62, 'dxy': (1.0, 1.0), 'decay_time': 0.4, 'p': 2, 'nb': 1, 'rf': 40, 'K': 150, 'gSig': [7.5, 7.5],...
outputs                                                                                                                                None
added_time                                                                                                              2024-10-01T16:34:44
ran_time                                                                                                                               None
algo_duration                                                                                                                          None
comments                                                                                                                               None
uuid                                                                                                   1fac642d-6cef-4a68-9415-737213b4462d
Name: 9, dtype: object
With params:{'main': {'fr': 9.62, 'dxy': (1.0, 1.0), 'decay_time': 0.4, 'p': 2, 'nb': 1, 'rf': 40, 'K': 150, 'gSig': array([7.5, 7.5]), 'stride': 10, 'method_init': 'greedy_roi', 'rolling_sum': True, 'use_cnn': False, 'ssub': 1, 'tsub': 1, 'merge_thr': 0.8, 'bas_nonneg': True, 'min_SNR': 1.4, 'rval_thr': 0.8}, 'refit': True}
    22104019 [cluster.py:setup_cluster():225] [16596] The local backend is an alias for the multiprocessing backend, and the alias may be removed in some future version of Caiman
    22104119 [params.py:change_params():1151] [16596] In setting CNMFParams, non-pathed parameters were used; this is deprecated. In some future version of Caiman, allow_legacy will default to False (and eventually will be removed)
<tifffile.TiffFile 'extracted_plane_10.tif'> shaped series axes do not match shape
making memmap
    22116719 [cluster.py:setup_cluster():225] [16596] The local backend is an alias for the multiprocessing backend, and the alias may be removed in some future version of Caiman
performing CNMF
fitting images
refitting
performing eval
Running 97569a0f-b5c4-41b5-9268-b4ddeda9d740 with local backend
************************************************************************

Starting CNMF item:
algo                                                                                                                                   cnmf
item_name                                                                                                                            cnmf_1
input_movie_path                                                                                                tiff\extracted_plane_11.tif
params              {'main': {'fr': 9.62, 'dxy': (1.0, 1.0), 'decay_time': 0.4, 'p': 2, 'nb': 1, 'rf': 40, 'K': 150, 'gSig': [7.5, 7.5],...
outputs                                                                                                                                None
added_time                                                                                                              2024-10-01T16:34:44
ran_time                                                                                                                               None
algo_duration                                                                                                                          None
comments                                                                                                                               None
uuid                                                                                                   97569a0f-b5c4-41b5-9268-b4ddeda9d740
Name: 10, dtype: object
With params:{'main': {'fr': 9.62, 'dxy': (1.0, 1.0), 'decay_time': 0.4, 'p': 2, 'nb': 1, 'rf': 40, 'K': 150, 'gSig': array([7.5, 7.5]), 'stride': 10, 'method_init': 'greedy_roi', 'rolling_sum': True, 'use_cnn': False, 'ssub': 1, 'tsub': 1, 'merge_thr': 0.8, 'bas_nonneg': True, 'min_SNR': 1.4, 'rval_thr': 0.8}, 'refit': True}
    23149086 [cluster.py:setup_cluster():225] [16596] The local backend is an alias for the multiprocessing backend, and the alias may be removed in some future version of Caiman
    23149198 [params.py:change_params():1151] [16596] In setting CNMFParams, non-pathed parameters were used; this is deprecated. In some future version of Caiman, allow_legacy will default to False (and eventually will be removed)
<tifffile.TiffFile 'extracted_plane_11.tif'> shaped series axes do not match shape
making memmap
    23161891 [cluster.py:setup_cluster():225] [16596] The local backend is an alias for the multiprocessing backend, and the alias may be removed in some future version of Caiman
performing CNMF
fitting images
refitting
performing eval
Running c2d0864d-1313-4ded-8b7f-4a7f02947b2d with local backend
************************************************************************

Starting CNMF item:
algo                                                                                                                                   cnmf
item_name                                                                                                                            cnmf_1
input_movie_path                                                                                                tiff\extracted_plane_12.tif
params              {'main': {'fr': 9.62, 'dxy': (1.0, 1.0), 'decay_time': 0.4, 'p': 2, 'nb': 1, 'rf': 40, 'K': 150, 'gSig': [7.5, 7.5],...
outputs                                                                                                                                None
added_time                                                                                                              2024-10-01T16:34:44
ran_time                                                                                                                               None
algo_duration                                                                                                                          None
comments                                                                                                                               None
uuid                                                                                                   c2d0864d-1313-4ded-8b7f-4a7f02947b2d
Name: 11, dtype: object
With params:{'main': {'fr': 9.62, 'dxy': (1.0, 1.0), 'decay_time': 0.4, 'p': 2, 'nb': 1, 'rf': 40, 'K': 150, 'gSig': array([7.5, 7.5]), 'stride': 10, 'method_init': 'greedy_roi', 'rolling_sum': True, 'use_cnn': False, 'ssub': 1, 'tsub': 1, 'merge_thr': 0.8, 'bas_nonneg': True, 'min_SNR': 1.4, 'rval_thr': 0.8}, 'refit': True}
    24200760 [cluster.py:setup_cluster():225] [16596] The local backend is an alias for the multiprocessing backend, and the alias may be removed in some future version of Caiman
    24200873 [params.py:change_params():1151] [16596] In setting CNMFParams, non-pathed parameters were used; this is deprecated. In some future version of Caiman, allow_legacy will default to False (and eventually will be removed)
<tifffile.TiffFile 'extracted_plane_12.tif'> shaped series axes do not match shape
making memmap
    24213260 [cluster.py:setup_cluster():225] [16596] The local backend is an alias for the multiprocessing backend, and the alias may be removed in some future version of Caiman
performing CNMF
fitting images
refitting
performing eval
Running 8301c084-fe7c-4e84-b8d7-db6fcc8893ed with local backend
************************************************************************

Starting CNMF item:
algo                                                                                                                                   cnmf
item_name                                                                                                                            cnmf_1
input_movie_path                                                                                                tiff\extracted_plane_13.tif
params              {'main': {'fr': 9.62, 'dxy': (1.0, 1.0), 'decay_time': 0.4, 'p': 2, 'nb': 1, 'rf': 40, 'K': 150, 'gSig': [7.5, 7.5],...
outputs                                                                                                                                None
added_time                                                                                                              2024-10-01T16:34:44
ran_time                                                                                                                               None
algo_duration                                                                                                                          None
comments                                                                                                                               None
uuid                                                                                                   8301c084-fe7c-4e84-b8d7-db6fcc8893ed
Name: 12, dtype: object
With params:{'main': {'fr': 9.62, 'dxy': (1.0, 1.0), 'decay_time': 0.4, 'p': 2, 'nb': 1, 'rf': 40, 'K': 150, 'gSig': array([7.5, 7.5]), 'stride': 10, 'method_init': 'greedy_roi', 'rolling_sum': True, 'use_cnn': False, 'ssub': 1, 'tsub': 1, 'merge_thr': 0.8, 'bas_nonneg': True, 'min_SNR': 1.4, 'rval_thr': 0.8}, 'refit': True}
    25154225 [cluster.py:setup_cluster():225] [16596] The local backend is an alias for the multiprocessing backend, and the alias may be removed in some future version of Caiman
    25154351 [params.py:change_params():1151] [16596] In setting CNMFParams, non-pathed parameters were used; this is deprecated. In some future version of Caiman, allow_legacy will default to False (and eventually will be removed)
<tifffile.TiffFile 'extracted_plane_13.tif'> shaped series axes do not match shape
making memmap
    25166700 [cluster.py:setup_cluster():225] [16596] The local backend is an alias for the multiprocessing backend, and the alias may be removed in some future version of Caiman
performing CNMF
fitting images
refitting
performing eval
Running 1eabd9f9-1a57-4c08-a830-9276371c00a9 with local backend
************************************************************************

Starting CNMF item:
algo                                                                                                                                   cnmf
item_name                                                                                                                            cnmf_1
input_movie_path                                                                                                tiff\extracted_plane_14.tif
params              {'main': {'fr': 9.62, 'dxy': (1.0, 1.0), 'decay_time': 0.4, 'p': 2, 'nb': 1, 'rf': 40, 'K': 150, 'gSig': [7.5, 7.5],...
outputs                                                                                                                                None
added_time                                                                                                              2024-10-01T16:34:44
ran_time                                                                                                                               None
algo_duration                                                                                                                          None
comments                                                                                                                               None
uuid                                                                                                   1eabd9f9-1a57-4c08-a830-9276371c00a9
Name: 13, dtype: object
With params:{'main': {'fr': 9.62, 'dxy': (1.0, 1.0), 'decay_time': 0.4, 'p': 2, 'nb': 1, 'rf': 40, 'K': 150, 'gSig': array([7.5, 7.5]), 'stride': 10, 'method_init': 'greedy_roi', 'rolling_sum': True, 'use_cnn': False, 'ssub': 1, 'tsub': 1, 'merge_thr': 0.8, 'bas_nonneg': True, 'min_SNR': 1.4, 'rval_thr': 0.8}, 'refit': True}
    26114993 [cluster.py:setup_cluster():225] [16596] The local backend is an alias for the multiprocessing backend, and the alias may be removed in some future version of Caiman
    26115098 [params.py:change_params():1151] [16596] In setting CNMFParams, non-pathed parameters were used; this is deprecated. In some future version of Caiman, allow_legacy will default to False (and eventually will be removed)
<tifffile.TiffFile 'extracted_plane_14.tif'> shaped series axes do not match shape
making memmap
    26127828 [cluster.py:setup_cluster():225] [16596] The local backend is an alias for the multiprocessing backend, and the alias may be removed in some future version of Caiman
performing CNMF
fitting images
refitting
performing eval
Running 25be7a5b-dd16-42cd-bd4a-1312b4c6e791 with local backend
************************************************************************

Starting CNMF item:
algo                                                                                                                                   cnmf
item_name                                                                                                                            cnmf_1
input_movie_path                                                                                                tiff\extracted_plane_15.tif
params              {'main': {'fr': 9.62, 'dxy': (1.0, 1.0), 'decay_time': 0.4, 'p': 2, 'nb': 1, 'rf': 40, 'K': 150, 'gSig': [7.5, 7.5],...
outputs                                                                                                                                None
added_time                                                                                                              2024-10-01T16:34:44
ran_time                                                                                                                               None
algo_duration                                                                                                                          None
comments                                                                                                                               None
uuid                                                                                                   25be7a5b-dd16-42cd-bd4a-1312b4c6e791
Name: 14, dtype: object
With params:{'main': {'fr': 9.62, 'dxy': (1.0, 1.0), 'decay_time': 0.4, 'p': 2, 'nb': 1, 'rf': 40, 'K': 150, 'gSig': array([7.5, 7.5]), 'stride': 10, 'method_init': 'greedy_roi', 'rolling_sum': True, 'use_cnn': False, 'ssub': 1, 'tsub': 1, 'merge_thr': 0.8, 'bas_nonneg': True, 'min_SNR': 1.4, 'rval_thr': 0.8}, 'refit': True}
    27085173 [cluster.py:setup_cluster():225] [16596] The local backend is an alias for the multiprocessing backend, and the alias may be removed in some future version of Caiman
    27085275 [params.py:change_params():1151] [16596] In setting CNMFParams, non-pathed parameters were used; this is deprecated. In some future version of Caiman, allow_legacy will default to False (and eventually will be removed)
<tifffile.TiffFile 'extracted_plane_15.tif'> shaped series axes do not match shape
making memmap
    27097698 [cluster.py:setup_cluster():225] [16596] The local backend is an alias for the multiprocessing backend, and the alias may be removed in some future version of Caiman
performing CNMF
fitting images
refitting
performing eval
Running f87dc096-6bb2-40dd-8dff-20f1362423b0 with local backend
************************************************************************

Starting CNMF item:
algo                                                                                                                                   cnmf
item_name                                                                                                                            cnmf_1
input_movie_path                                                                                                tiff\extracted_plane_16.tif
params              {'main': {'fr': 9.62, 'dxy': (1.0, 1.0), 'decay_time': 0.4, 'p': 2, 'nb': 1, 'rf': 40, 'K': 150, 'gSig': [7.5, 7.5],...
outputs                                                                                                                                None
added_time                                                                                                              2024-10-01T16:34:44
ran_time                                                                                                                               None
algo_duration                                                                                                                          None
comments                                                                                                                               None
uuid                                                                                                   f87dc096-6bb2-40dd-8dff-20f1362423b0
Name: 15, dtype: object
With params:{'main': {'fr': 9.62, 'dxy': (1.0, 1.0), 'decay_time': 0.4, 'p': 2, 'nb': 1, 'rf': 40, 'K': 150, 'gSig': array([7.5, 7.5]), 'stride': 10, 'method_init': 'greedy_roi', 'rolling_sum': True, 'use_cnn': False, 'ssub': 1, 'tsub': 1, 'merge_thr': 0.8, 'bas_nonneg': True, 'min_SNR': 1.4, 'rval_thr': 0.8}, 'refit': True}
    28180411 [cluster.py:setup_cluster():225] [16596] The local backend is an alias for the multiprocessing backend, and the alias may be removed in some future version of Caiman
    28180503 [params.py:change_params():1151] [16596] In setting CNMFParams, non-pathed parameters were used; this is deprecated. In some future version of Caiman, allow_legacy will default to False (and eventually will be removed)
<tifffile.TiffFile 'extracted_plane_16.tif'> shaped series axes do not match shape
making memmap
    28193026 [cluster.py:setup_cluster():225] [16596] The local backend is an alias for the multiprocessing backend, and the alias may be removed in some future version of Caiman
performing CNMF
fitting images
refitting
performing eval
Running 0e6f8223-3002-4430-a987-d83a6d7c7bd8 with local backend
************************************************************************

Starting CNMF item:
algo                                                                                                                                   cnmf
item_name                                                                                                                            cnmf_1
input_movie_path                                                                                                tiff\extracted_plane_17.tif
params              {'main': {'fr': 9.62, 'dxy': (1.0, 1.0), 'decay_time': 0.4, 'p': 2, 'nb': 1, 'rf': 40, 'K': 150, 'gSig': [7.5, 7.5],...
outputs                                                                                                                                None
added_time                                                                                                              2024-10-01T16:34:44
ran_time                                                                                                                               None
algo_duration                                                                                                                          None
comments                                                                                                                               None
uuid                                                                                                   0e6f8223-3002-4430-a987-d83a6d7c7bd8
Name: 16, dtype: object
With params:{'main': {'fr': 9.62, 'dxy': (1.0, 1.0), 'decay_time': 0.4, 'p': 2, 'nb': 1, 'rf': 40, 'K': 150, 'gSig': array([7.5, 7.5]), 'stride': 10, 'method_init': 'greedy_roi', 'rolling_sum': True, 'use_cnn': False, 'ssub': 1, 'tsub': 1, 'merge_thr': 0.8, 'bas_nonneg': True, 'min_SNR': 1.4, 'rval_thr': 0.8}, 'refit': True}
    29157494 [cluster.py:setup_cluster():225] [16596] The local backend is an alias for the multiprocessing backend, and the alias may be removed in some future version of Caiman
    29157591 [params.py:change_params():1151] [16596] In setting CNMFParams, non-pathed parameters were used; this is deprecated. In some future version of Caiman, allow_legacy will default to False (and eventually will be removed)
<tifffile.TiffFile 'extracted_plane_17.tif'> shaped series axes do not match shape
making memmap
    29170250 [cluster.py:setup_cluster():225] [16596] The local backend is an alias for the multiprocessing backend, and the alias may be removed in some future version of Caiman
performing CNMF
fitting images
refitting
performing eval
    30348548 [estimates.py:evaluate_components():1060] [16596] NaN values detected for space correlation in [ 582 3959]. Changing their value to -1.
Running 52ab80e3-880f-4ae5-bd38-711c0138ebe2 with local backend
************************************************************************

Starting CNMF item:
algo                                                                                                                                   cnmf
item_name                                                                                                                            cnmf_1
input_movie_path                                                                                                tiff\extracted_plane_18.tif
params              {'main': {'fr': 9.62, 'dxy': (1.0, 1.0), 'decay_time': 0.4, 'p': 2, 'nb': 1, 'rf': 40, 'K': 150, 'gSig': [7.5, 7.5],...
outputs                                                                                                                                None
added_time                                                                                                              2024-10-01T16:34:44
ran_time                                                                                                                               None
algo_duration                                                                                                                          None
comments                                                                                                                               None
uuid                                                                                                   52ab80e3-880f-4ae5-bd38-711c0138ebe2
Name: 17, dtype: object
With params:{'main': {'fr': 9.62, 'dxy': (1.0, 1.0), 'decay_time': 0.4, 'p': 2, 'nb': 1, 'rf': 40, 'K': 150, 'gSig': array([7.5, 7.5]), 'stride': 10, 'method_init': 'greedy_roi', 'rolling_sum': True, 'use_cnn': False, 'ssub': 1, 'tsub': 1, 'merge_thr': 0.8, 'bas_nonneg': True, 'min_SNR': 1.4, 'rval_thr': 0.8}, 'refit': True}
    30355360 [cluster.py:setup_cluster():225] [16596] The local backend is an alias for the multiprocessing backend, and the alias may be removed in some future version of Caiman
    30355468 [params.py:change_params():1151] [16596] In setting CNMFParams, non-pathed parameters were used; this is deprecated. In some future version of Caiman, allow_legacy will default to False (and eventually will be removed)
<tifffile.TiffFile 'extracted_plane_18.tif'> shaped series axes do not match shape
making memmap
    30367833 [cluster.py:setup_cluster():225] [16596] The local backend is an alias for the multiprocessing backend, and the alias may be removed in some future version of Caiman
performing CNMF
fitting images
refitting
performing eval
    31452651 [estimates.py:evaluate_components():1060] [16596] NaN values detected for space correlation in [9105]. Changing their value to -1.
Running 65c8dfa4-2a65-4618-8240-7f08fccce4ad with local backend
************************************************************************

Starting CNMF item:
algo                                                                                                                                   cnmf
item_name                                                                                                                            cnmf_1
input_movie_path                                                                                                tiff\extracted_plane_19.tif
params              {'main': {'fr': 9.62, 'dxy': (1.0, 1.0), 'decay_time': 0.4, 'p': 2, 'nb': 1, 'rf': 40, 'K': 150, 'gSig': [7.5, 7.5],...
outputs                                                                                                                                None
added_time                                                                                                              2024-10-01T16:34:44
ran_time                                                                                                                               None
algo_duration                                                                                                                          None
comments                                                                                                                               None
uuid                                                                                                   65c8dfa4-2a65-4618-8240-7f08fccce4ad
Name: 18, dtype: object
With params:{'main': {'fr': 9.62, 'dxy': (1.0, 1.0), 'decay_time': 0.4, 'p': 2, 'nb': 1, 'rf': 40, 'K': 150, 'gSig': array([7.5, 7.5]), 'stride': 10, 'method_init': 'greedy_roi', 'rolling_sum': True, 'use_cnn': False, 'ssub': 1, 'tsub': 1, 'merge_thr': 0.8, 'bas_nonneg': True, 'min_SNR': 1.4, 'rval_thr': 0.8}, 'refit': True}
    31459533 [cluster.py:setup_cluster():225] [16596] The local backend is an alias for the multiprocessing backend, and the alias may be removed in some future version of Caiman
    31459639 [params.py:change_params():1151] [16596] In setting CNMFParams, non-pathed parameters were used; this is deprecated. In some future version of Caiman, allow_legacy will default to False (and eventually will be removed)
<tifffile.TiffFile 'extracted_plane_19.tif'> shaped series axes do not match shape
making memmap
    31472279 [cluster.py:setup_cluster():225] [16596] The local backend is an alias for the multiprocessing backend, and the alias may be removed in some future version of Caiman
performing CNMF
fitting images
refitting
performing eval
Running 473b088b-1b8e-4ecb-97e2-75eb299851b2 with local backend
************************************************************************

Starting CNMF item:
algo                                                                                                                                   cnmf
item_name                                                                                                                            cnmf_1
input_movie_path                                                                                                tiff\extracted_plane_20.tif
params              {'main': {'fr': 9.62, 'dxy': (1.0, 1.0), 'decay_time': 0.4, 'p': 2, 'nb': 1, 'rf': 40, 'K': 150, 'gSig': [7.5, 7.5],...
outputs                                                                                                                                None
added_time                                                                                                              2024-10-01T16:34:44
ran_time                                                                                                                               None
algo_duration                                                                                                                          None
comments                                                                                                                               None
uuid                                                                                                   473b088b-1b8e-4ecb-97e2-75eb299851b2
Name: 19, dtype: object
With params:{'main': {'fr': 9.62, 'dxy': (1.0, 1.0), 'decay_time': 0.4, 'p': 2, 'nb': 1, 'rf': 40, 'K': 150, 'gSig': array([7.5, 7.5]), 'stride': 10, 'method_init': 'greedy_roi', 'rolling_sum': True, 'use_cnn': False, 'ssub': 1, 'tsub': 1, 'merge_thr': 0.8, 'bas_nonneg': True, 'min_SNR': 1.4, 'rval_thr': 0.8}, 'refit': True}
    32586470 [cluster.py:setup_cluster():225] [16596] The local backend is an alias for the multiprocessing backend, and the alias may be removed in some future version of Caiman
    32586579 [params.py:change_params():1151] [16596] In setting CNMFParams, non-pathed parameters were used; this is deprecated. In some future version of Caiman, allow_legacy will default to False (and eventually will be removed)
<tifffile.TiffFile 'extracted_plane_20.tif'> shaped series axes do not match shape
making memmap
    32599260 [cluster.py:setup_cluster():225] [16596] The local backend is an alias for the multiprocessing backend, and the alias may be removed in some future version of Caiman
performing CNMF
fitting images
refitting
performing eval
    33628117 [estimates.py:evaluate_components():1060] [16596] NaN values detected for space correlation in [7225 9423]. Changing their value to -1.
Running 60d2fc66-20a9-4f00-b6f7-b9e80440efe7 with local backend
************************************************************************

Starting CNMF item:
algo                                                                                                                                   cnmf
item_name                                                                                                                            cnmf_1
input_movie_path                                                                                                tiff\extracted_plane_21.tif
params              {'main': {'fr': 9.62, 'dxy': (1.0, 1.0), 'decay_time': 0.4, 'p': 2, 'nb': 1, 'rf': 40, 'K': 150, 'gSig': [7.5, 7.5],...
outputs                                                                                                                                None
added_time                                                                                                              2024-10-01T16:34:44
ran_time                                                                                                                               None
algo_duration                                                                                                                          None
comments                                                                                                                               None
uuid                                                                                                   60d2fc66-20a9-4f00-b6f7-b9e80440efe7
Name: 20, dtype: object
With params:{'main': {'fr': 9.62, 'dxy': (1.0, 1.0), 'decay_time': 0.4, 'p': 2, 'nb': 1, 'rf': 40, 'K': 150, 'gSig': array([7.5, 7.5]), 'stride': 10, 'method_init': 'greedy_roi', 'rolling_sum': True, 'use_cnn': False, 'ssub': 1, 'tsub': 1, 'merge_thr': 0.8, 'bas_nonneg': True, 'min_SNR': 1.4, 'rval_thr': 0.8}, 'refit': True}
    33634801 [cluster.py:setup_cluster():225] [16596] The local backend is an alias for the multiprocessing backend, and the alias may be removed in some future version of Caiman
    33634913 [params.py:change_params():1151] [16596] In setting CNMFParams, non-pathed parameters were used; this is deprecated. In some future version of Caiman, allow_legacy will default to False (and eventually will be removed)
<tifffile.TiffFile 'extracted_plane_21.tif'> shaped series axes do not match shape
making memmap
    33647481 [cluster.py:setup_cluster():225] [16596] The local backend is an alias for the multiprocessing backend, and the alias may be removed in some future version of Caiman
performing CNMF
fitting images
refitting
performing eval
    34717794 [estimates.py:evaluate_components():1060] [16596] NaN values detected for space correlation in [9804]. Changing their value to -1.
Running 8926526d-cc18-47e2-b599-1496b2c9f03e with local backend
************************************************************************

Starting CNMF item:
algo                                                                                                                                   cnmf
item_name                                                                                                                            cnmf_1
input_movie_path                                                                                                tiff\extracted_plane_22.tif
params              {'main': {'fr': 9.62, 'dxy': (1.0, 1.0), 'decay_time': 0.4, 'p': 2, 'nb': 1, 'rf': 40, 'K': 150, 'gSig': [7.5, 7.5],...
outputs                                                                                                                                None
added_time                                                                                                              2024-10-01T16:34:44
ran_time                                                                                                                               None
algo_duration                                                                                                                          None
comments                                                                                                                               None
uuid                                                                                                   8926526d-cc18-47e2-b599-1496b2c9f03e
Name: 21, dtype: object
With params:{'main': {'fr': 9.62, 'dxy': (1.0, 1.0), 'decay_time': 0.4, 'p': 2, 'nb': 1, 'rf': 40, 'K': 150, 'gSig': array([7.5, 7.5]), 'stride': 10, 'method_init': 'greedy_roi', 'rolling_sum': True, 'use_cnn': False, 'ssub': 1, 'tsub': 1, 'merge_thr': 0.8, 'bas_nonneg': True, 'min_SNR': 1.4, 'rval_thr': 0.8}, 'refit': True}
    34724915 [cluster.py:setup_cluster():225] [16596] The local backend is an alias for the multiprocessing backend, and the alias may be removed in some future version of Caiman
    34725027 [params.py:change_params():1151] [16596] In setting CNMFParams, non-pathed parameters were used; this is deprecated. In some future version of Caiman, allow_legacy will default to False (and eventually will be removed)
<tifffile.TiffFile 'extracted_plane_22.tif'> shaped series axes do not match shape
making memmap
    34737745 [cluster.py:setup_cluster():225] [16596] The local backend is an alias for the multiprocessing backend, and the alias may be removed in some future version of Caiman
performing CNMF
fitting images
refitting
performing eval
    35933489 [estimates.py:evaluate_components():1060] [16596] NaN values detected for space correlation in [9962]. Changing their value to -1.
Running f2b1c811-e02a-4058-a15b-861ee1128793 with local backend
************************************************************************

Starting CNMF item:
algo                                                                                                                                   cnmf
item_name                                                                                                                            cnmf_1
input_movie_path                                                                                                tiff\extracted_plane_23.tif
params              {'main': {'fr': 9.62, 'dxy': (1.0, 1.0), 'decay_time': 0.4, 'p': 2, 'nb': 1, 'rf': 40, 'K': 150, 'gSig': [7.5, 7.5],...
outputs                                                                                                                                None
added_time                                                                                                              2024-10-01T16:34:44
ran_time                                                                                                                               None
algo_duration                                                                                                                          None
comments                                                                                                                               None
uuid                                                                                                   f2b1c811-e02a-4058-a15b-861ee1128793
Name: 22, dtype: object
With params:{'main': {'fr': 9.62, 'dxy': (1.0, 1.0), 'decay_time': 0.4, 'p': 2, 'nb': 1, 'rf': 40, 'K': 150, 'gSig': array([7.5, 7.5]), 'stride': 10, 'method_init': 'greedy_roi', 'rolling_sum': True, 'use_cnn': False, 'ssub': 1, 'tsub': 1, 'merge_thr': 0.8, 'bas_nonneg': True, 'min_SNR': 1.4, 'rval_thr': 0.8}, 'refit': True}
    35940221 [cluster.py:setup_cluster():225] [16596] The local backend is an alias for the multiprocessing backend, and the alias may be removed in some future version of Caiman
    35940329 [params.py:change_params():1151] [16596] In setting CNMFParams, non-pathed parameters were used; this is deprecated. In some future version of Caiman, allow_legacy will default to False (and eventually will be removed)
<tifffile.TiffFile 'extracted_plane_23.tif'> shaped series axes do not match shape
making memmap
    35953329 [cluster.py:setup_cluster():225] [16596] The local backend is an alias for the multiprocessing backend, and the alias may be removed in some future version of Caiman
performing CNMF
fitting images
refitting
performing eval
    37047605 [estimates.py:evaluate_components():1060] [16596] NaN values detected for space correlation in [10077]. Changing their value to -1.
Running 5c9bd42e-fb07-43f0-a18d-0b9e516db4ec with local backend
************************************************************************

Starting CNMF item:
algo                                                                                                                                   cnmf
item_name                                                                                                                            cnmf_1
input_movie_path                                                                                                tiff\extracted_plane_24.tif
params              {'main': {'fr': 9.62, 'dxy': (1.0, 1.0), 'decay_time': 0.4, 'p': 2, 'nb': 1, 'rf': 40, 'K': 150, 'gSig': [7.5, 7.5],...
outputs                                                                                                                                None
added_time                                                                                                              2024-10-01T16:34:44
ran_time                                                                                                                               None
algo_duration                                                                                                                          None
comments                                                                                                                               None
uuid                                                                                                   5c9bd42e-fb07-43f0-a18d-0b9e516db4ec
Name: 23, dtype: object
With params:{'main': {'fr': 9.62, 'dxy': (1.0, 1.0), 'decay_time': 0.4, 'p': 2, 'nb': 1, 'rf': 40, 'K': 150, 'gSig': array([7.5, 7.5]), 'stride': 10, 'method_init': 'greedy_roi', 'rolling_sum': True, 'use_cnn': False, 'ssub': 1, 'tsub': 1, 'merge_thr': 0.8, 'bas_nonneg': True, 'min_SNR': 1.4, 'rval_thr': 0.8}, 'refit': True}
    37054379 [cluster.py:setup_cluster():225] [16596] The local backend is an alias for the multiprocessing backend, and the alias may be removed in some future version of Caiman
    37054485 [params.py:change_params():1151] [16596] In setting CNMFParams, non-pathed parameters were used; this is deprecated. In some future version of Caiman, allow_legacy will default to False (and eventually will be removed)
<tifffile.TiffFile 'extracted_plane_24.tif'> shaped series axes do not match shape
making memmap
    37067507 [cluster.py:setup_cluster():225] [16596] The local backend is an alias for the multiprocessing backend, and the alias may be removed in some future version of Caiman
performing CNMF
fitting images
refitting
performing eval
Running 84004c56-81c1-474b-ab38-327fbf79bf8c with local backend
************************************************************************

Starting CNMF item:
algo                                                                                                                                   cnmf
item_name                                                                                                                            cnmf_1
input_movie_path                                                                                                tiff\extracted_plane_25.tif
params              {'main': {'fr': 9.62, 'dxy': (1.0, 1.0), 'decay_time': 0.4, 'p': 2, 'nb': 1, 'rf': 40, 'K': 150, 'gSig': [7.5, 7.5],...
outputs                                                                                                                                None
added_time                                                                                                              2024-10-01T16:34:44
ran_time                                                                                                                               None
algo_duration                                                                                                                          None
comments                                                                                                                               None
uuid                                                                                                   84004c56-81c1-474b-ab38-327fbf79bf8c
Name: 24, dtype: object
With params:{'main': {'fr': 9.62, 'dxy': (1.0, 1.0), 'decay_time': 0.4, 'p': 2, 'nb': 1, 'rf': 40, 'K': 150, 'gSig': array([7.5, 7.5]), 'stride': 10, 'method_init': 'greedy_roi', 'rolling_sum': True, 'use_cnn': False, 'ssub': 1, 'tsub': 1, 'merge_thr': 0.8, 'bas_nonneg': True, 'min_SNR': 1.4, 'rval_thr': 0.8}, 'refit': True}
    38169309 [cluster.py:setup_cluster():225] [16596] The local backend is an alias for the multiprocessing backend, and the alias may be removed in some future version of Caiman
    38169411 [params.py:change_params():1151] [16596] In setting CNMFParams, non-pathed parameters were used; this is deprecated. In some future version of Caiman, allow_legacy will default to False (and eventually will be removed)
<tifffile.TiffFile 'extracted_plane_25.tif'> shaped series axes do not match shape
making memmap
    38182278 [cluster.py:setup_cluster():225] [16596] The local backend is an alias for the multiprocessing backend, and the alias may be removed in some future version of Caiman
performing CNMF
fitting images
refitting
performing eval
Running 23521021-6791-4d41-855d-779eefce6840 with local backend
************************************************************************

Starting CNMF item:
algo                                                                                                                                   cnmf
item_name                                                                                                                            cnmf_1
input_movie_path                                                                                                tiff\extracted_plane_26.tif
params              {'main': {'fr': 9.62, 'dxy': (1.0, 1.0), 'decay_time': 0.4, 'p': 2, 'nb': 1, 'rf': 40, 'K': 150, 'gSig': [7.5, 7.5],...
outputs                                                                                                                                None
added_time                                                                                                              2024-10-01T16:34:44
ran_time                                                                                                                               None
algo_duration                                                                                                                          None
comments                                                                                                                               None
uuid                                                                                                   23521021-6791-4d41-855d-779eefce6840
Name: 25, dtype: object
With params:{'main': {'fr': 9.62, 'dxy': (1.0, 1.0), 'decay_time': 0.4, 'p': 2, 'nb': 1, 'rf': 40, 'K': 150, 'gSig': array([7.5, 7.5]), 'stride': 10, 'method_init': 'greedy_roi', 'rolling_sum': True, 'use_cnn': False, 'ssub': 1, 'tsub': 1, 'merge_thr': 0.8, 'bas_nonneg': True, 'min_SNR': 1.4, 'rval_thr': 0.8}, 'refit': True}
    39302316 [cluster.py:setup_cluster():225] [16596] The local backend is an alias for the multiprocessing backend, and the alias may be removed in some future version of Caiman
    39302420 [params.py:change_params():1151] [16596] In setting CNMFParams, non-pathed parameters were used; this is deprecated. In some future version of Caiman, allow_legacy will default to False (and eventually will be removed)
<tifffile.TiffFile 'extracted_plane_26.tif'> shaped series axes do not match shape
making memmap
    39315055 [cluster.py:setup_cluster():225] [16596] The local backend is an alias for the multiprocessing backend, and the alias may be removed in some future version of Caiman
performing CNMF
fitting images
refitting
performing eval
    40315273 [estimates.py:evaluate_components():1060] [16596] NaN values detected for space correlation in [ 947 1288]. Changing their value to -1.
Running 07907a0b-b138-41e3-99a7-f7153738a640 with local backend
************************************************************************

Starting CNMF item:
algo                                                                                                                                   cnmf
item_name                                                                                                                            cnmf_1
input_movie_path                                                                                                tiff\extracted_plane_27.tif
params              {'main': {'fr': 9.62, 'dxy': (1.0, 1.0), 'decay_time': 0.4, 'p': 2, 'nb': 1, 'rf': 40, 'K': 150, 'gSig': [7.5, 7.5],...
outputs                                                                                                                                None
added_time                                                                                                              2024-10-01T16:34:44
ran_time                                                                                                                               None
algo_duration                                                                                                                          None
comments                                                                                                                               None
uuid                                                                                                   07907a0b-b138-41e3-99a7-f7153738a640
Name: 26, dtype: object
With params:{'main': {'fr': 9.62, 'dxy': (1.0, 1.0), 'decay_time': 0.4, 'p': 2, 'nb': 1, 'rf': 40, 'K': 150, 'gSig': array([7.5, 7.5]), 'stride': 10, 'method_init': 'greedy_roi', 'rolling_sum': True, 'use_cnn': False, 'ssub': 1, 'tsub': 1, 'merge_thr': 0.8, 'bas_nonneg': True, 'min_SNR': 1.4, 'rval_thr': 0.8}, 'refit': True}
    40322141 [cluster.py:setup_cluster():225] [16596] The local backend is an alias for the multiprocessing backend, and the alias may be removed in some future version of Caiman
    40322241 [params.py:change_params():1151] [16596] In setting CNMFParams, non-pathed parameters were used; this is deprecated. In some future version of Caiman, allow_legacy will default to False (and eventually will be removed)
<tifffile.TiffFile 'extracted_plane_27.tif'> shaped series axes do not match shape
making memmap
    40334799 [cluster.py:setup_cluster():225] [16596] The local backend is an alias for the multiprocessing backend, and the alias may be removed in some future version of Caiman
performing CNMF
fitting images
refitting
performing eval
    41494502 [estimates.py:evaluate_components():1060] [16596] NaN values detected for space correlation in [ 891 5310 5924]. Changing their value to -1.
Running 8b7cbfb4-7c62-4780-a90c-5275cbe1f318 with local backend
************************************************************************

Starting CNMF item:
algo                                                                                                                                   cnmf
item_name                                                                                                                            cnmf_1
input_movie_path                                                                                                tiff\extracted_plane_28.tif
params              {'main': {'fr': 9.62, 'dxy': (1.0, 1.0), 'decay_time': 0.4, 'p': 2, 'nb': 1, 'rf': 40, 'K': 150, 'gSig': [7.5, 7.5],...
outputs                                                                                                                                None
added_time                                                                                                              2024-10-01T16:34:44
ran_time                                                                                                                               None
algo_duration                                                                                                                          None
comments                                                                                                                               None
uuid                                                                                                   8b7cbfb4-7c62-4780-a90c-5275cbe1f318
Name: 27, dtype: object
With params:{'main': {'fr': 9.62, 'dxy': (1.0, 1.0), 'decay_time': 0.4, 'p': 2, 'nb': 1, 'rf': 40, 'K': 150, 'gSig': array([7.5, 7.5]), 'stride': 10, 'method_init': 'greedy_roi', 'rolling_sum': True, 'use_cnn': False, 'ssub': 1, 'tsub': 1, 'merge_thr': 0.8, 'bas_nonneg': True, 'min_SNR': 1.4, 'rval_thr': 0.8}, 'refit': True}
    41501713 [cluster.py:setup_cluster():225] [16596] The local backend is an alias for the multiprocessing backend, and the alias may be removed in some future version of Caiman
    41501811 [params.py:change_params():1151] [16596] In setting CNMFParams, non-pathed parameters were used; this is deprecated. In some future version of Caiman, allow_legacy will default to False (and eventually will be removed)
<tifffile.TiffFile 'extracted_plane_28.tif'> shaped series axes do not match shape
making memmap
    41514314 [cluster.py:setup_cluster():225] [16596] The local backend is an alias for the multiprocessing backend, and the alias may be removed in some future version of Caiman
performing CNMF
fitting images
refitting
performing eval
    42442632 [estimates.py:evaluate_components():1060] [16596] NaN values detected for space correlation in [ 4414  4684  7886  8450  8963 10179]. Changing their value to -1.
import fastplitlib as fpl

# create image widget for raw neural activity
raw_iw = fpl.Figure()

# re-add our identified good components from before using the SNR mapping
contours_graphic = raw_iw[0,0].add_line_collection(data=contours, cmap="spring", thickness=2, name="contours")

# get temporal components
temporal = df.iloc[row_ix].cnmf.get_temporal(component_indices="good")

# temporal plot
plot_temporal = fpl.Figure(size=(600,100))
plot_temporal[0,0].add_line(temporal[0], colors="magenta")

# add a linear selector to temporal trace
plot_temporal[0,0].graphics[0].add_linear_selector()

# show temporal plot and mcorr/rcm plot in ipywidgets VBox
sc = Sidecar()

# with sc:
display(VBox([raw_iw.show(), plot_temporal.show()]))
from ipywidgets import Tab, Text, Button, VBox, interact_manual, interactive
@interact_manual(parent_path=str(parent_path), batch_path=str(batch_path))
def start_widget(parent_path, batch_path):
    mc.set_parent_raw_data_path(parent_path)

    df = mc.load_batch(batch_path)

    tab = Tab()

    # mcorr_container = df.mcorr.viz()
    cnmf_container = df.cnmf.viz(start_index=1)

    tab.children = [cnmf_container.show()]
    tab.titles = ["cnmf"]
    display(tab)